生物信号分析

当前话题为您枚举了最新的 生物信号分析。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

BiSiDat - 生物信号数据库
BiSiDat 提供丰富的生物信号记录功能,支持心电图(ECG)、脑电图(EEG)和语音信号等。它还具备数据存储、数据挖掘和分析功能,涵盖心率变异性 (HRV)、QT 间期、RR 间期和 ST 段等指标。 该应用程序基于 Java 开发,可在各种设备上运行,并支持桌面或客户端-服务器两种运行模式。
Octave/Matlab框架Brainoid用于生物信号数据分析的工具
Brainoid是一个Octave/Matlab框架,专门设计用于分析生物信号数据,特别是脑机接口(BCI)数据。它提供了一套模块化的信号处理工具,包括预处理、建模和后处理,每个模块都可以进一步分解为子模块,如规范化或预处理。通过引入测试驱动开发(TDD)的概念,Brainoid不仅使得构建在线或离线BCI系统更加容易,还能帮助用户编写可重用和维护性高的代码。此外,Brainoid支持第三方库的集成,以解析和处理各种原始数据。
生物信号和生物医学图像处理-第五章Matlab代码
生物信号和生物医学图像处理第五章代码
WHO微生物分析系统
WHO微生物分析系统提供数据统计、计算、图表功能,并支持数据导出至Excel。
MATLAB 肌电信号处理代码用于生物医学信号处理和控制
此 MATLAB 代码用于肌电信号的处理,如论文《Wearable_Sensor_Long-term_sEMG_Dataset》中所述,该论文已发表在《生物医学信号处理和控制》期刊上。此代码可用于控制 3D 图形,展示数据集的简单在线处理。该项目包含以下文件夹: 手势动作:每个基本动作有 8 段视频数据 EMG 数据:来自 5 个主题的 30 天 EMG 数据(每个文件包含 1.5 秒信息) CSV 文件:D 表示天,M 表示运动标签,T 表示试验次数 代码:包含主 m.file(main_script),可依次使用以下功能: set_config 预处理 extract_feature
Biopython生物信息数据分析指南
本书籍以中文详细介绍了Biopython库在生物信息学数据分析中的应用。内容涵盖序列分析、结构分析、数据库访问等方面,并结合实际案例进行讲解,帮助读者掌握利用Biopython进行生物信息数据处理和分析的方法。
生物膜图像分析用 MATLAB 代码
这些 MATLAB 代码是用于定量分析显微镜图像的工具,重点是细菌生物膜。它们提供用于图像分割、特征提取和数据可视化的功能。这些代码已用于研究生物膜中细胞形态和行为的变化。代码已在 GitHub 上开源,包括完整源代码和使用说明。
生物医学数据挖掘之回归分析
生物医学数据挖掘之回归分析 上海交通大学医学院计算机应用教研室 龚著琳 回归分析作为一种统计学方法,在生物医学数据挖掘中发挥着至关重要的作用。通过建立自变量(例如基因表达水平、患者特征)和因变量(例如疾病风险、治疗效果)之间的数学关系,回归分析能够帮助我们: 识别预测疾病风险的关键因素: 通过分析大量患者数据,回归模型可以识别出与疾病发生发展密切相关的生物标志物和临床指标,从而为疾病的早期诊断和风险评估提供依据。 预测治疗效果和预后: 回归分析可以帮助我们了解不同治疗方案对患者预后的影响,并根据患者的个体特征预测其对特定治疗的反应,从而实现精准医疗的目标。 揭示生物学机制: 通过分析基因表
生物信息学中的数据分析
[生物数据挖掘].Biological.Data.Mining.pdf 内容已被转换,现用于生物信息学中的数据分析。详细了解生物信息学如何解析和利用生物数据。
超声波时延信号分析任务报告-超声波信号分析.rar
超声波时延信号分析任务报告详细要求可参见《685505869_1_过程参数检测作业2.doc》。以下为文件内容摘要:1) 假设超声波顺流传播信号(Sensor1发射,Sensor2接收)可表达为:MHz(超声波频率),秒,信号长度为秒。对信号进行Matlab采样,采样频率为1GHz下的波形;2) 超声波逆流传播信号(Sensor2发射,Sensor1接收)可视为顺流传播信号的延时版本,延时为逆流信号与顺流信号间的时间差。详细数学符号请参考doc文件。