分类数据集
当前话题为您枚举了最新的分类数据集。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
垃圾分类数据集
Gary Thung 和 Mindy Yang 收集的图像数据集,用于垃圾分类任务。有助于了解垃圾分类方法,指导普通民众科学处理垃圾,提高城市环境质量。
算法与数据结构
5
2024-05-01
心跳信号分类预测数据集
本数据集用于预测心电图心跳信号类别,包含超过 20 万条来自某平台的心电图数据记录,每条数据均由 1 列采样频次一致、长度相等的信号序列组成。为确保比赛公平,将抽取 10 万条作为训练集,2 万条作为测试集 A,2 万条作为测试集 B,并对心跳信号类别进行脱敏处理。数据集包含以下文件:testA.csv、sample_submit.csv 和 train.csv。
数据挖掘
4
2024-05-19
基于数据挖掘的分类器数据集分类基础工具
分类器当前版本:0.1 开发版,基于数据挖掘概念的基础分类软件。此应用程序仅适用于完整的分类属性且无缺失值的数据集。目前版本可能含有一些错误,我会不断修复,敬请关注更新!
要求:- Python 3.3+:请从官网下载。- Numpy:请从官网下载。- PyQt4:请从官网下载。
使用方法:项目根目录包含示例文件 data.txt,您可使用它测试应用程序。Classifier v0.1 包括以下4个步骤:
步骤 1:选择一个.txt格式的数据集,它将用于构建决策树。建议检查 data.txt 文件以了解正确的格式。所有记录需按行排列,每条记录用逗号隔开,不包含括号或方括号。
步骤 2:选择数...(内容未完,请按实际需求填写)
数据挖掘
0
2024-10-26
2011 ISMIS 音乐流派分类数据集
整合所有音乐流派分类数据的综合数据集。
算法与数据结构
6
2024-04-30
UCI数据集分类算法性能评估
本实验选用UCI数据集进行研究,共进行了15~16个实验组。每个组选择一个数据集进行分析,并评估至少三种分类算法的性能。结果表明,某些算法表现显著优于其他算法。文章详细解释了性能最佳算法的实验结果,包括文字和图形评估结果。
数据挖掘
2
2024-07-17
Wine 数据集:经典的多元分类资源
Wine 数据集包含来自三个不同品种的 178 个葡萄酒样本数据,每个样本具有 13 个属性,例如酒精含量、苹果酸含量等。该数据集广泛应用于数据挖掘和机器学习领域的分类算法研究,是初学者入门和算法评估的理想选择。
数据挖掘
3
2024-04-30
Iris 数据集:神经网络分类任务
Fisher 的 Iris 数据集常被用作神经网络程序的测试数据集。数据集包含鸢尾花属植物的萼片和花瓣的长度和宽度数据。通过将类用数字标识(0-2),数据变为适合神经网络训练的格式。
spark
3
2024-05-12
基于规则的数据集分类方法优化规则关联分类的创新应用
基于规则的分类方法称为关联分类(AC),通常在数据挖掘中根据监督学习的数据集构造准确的分类器。它提取“If-Then”规则,并将每个生成的规则与两个计算出的参数关联:支持和置信度。当前的AC算法中,每次将规则插入分类器时,相应的训练数据会被丢弃,但实际上这些数据用于计算其他规则的支持和置信度,影响其他较低排名的规则。静态支持和置信度会导致大型、不准确的分类器,因此需要改进支持和置信度的计算方法。
数据挖掘
0
2024-08-22
机器学习与数据挖掘中的图像分类数据集
在机器学习和数据挖掘领域,图像分类是一项基础且关键的任务,涉及计算机视觉和模式识别。这个专为研究而设计的“猫狗分类数据集”包含猫和狗两类图像,用于训练模型并评估其性能。数据集已预先划分为训练集和测试集,便于开发者进行模型训练和泛化能力验证。数据预处理阶段包括图像缩放、归一化和增强等步骤,以提高模型训练效率。特征提取使用卷积神经网络(CNN)等方法,帮助模型从图像中提取有意义的特征。常用的模型包括SVM、随机森林以及经典的深度学习模型如AlexNet和ResNet,这些模型通过反向传播和梯度下降进行训练优化。模型评估通过准确率、精确率、召回率和F1分数等指标进行,以验证模型在测试集上的预测效果。
数据挖掘
2
2024-07-17
使用BP算法分类Iris数据集的实现教程
数据结构是计算机存储、组织数据的方式,涉及到数据的逻辑结构、物理结构以及对数据的基本操作。数据结构的选择会影响程序的效率、可读性和可维护性。常见的数据结构有数组、链表、栈、队列、树、图等。算法则是解决特定问题的步骤,是对数据运算和操作的详细描述。算法的设计和选择直接影响程序的效率,因此在设计和选择算法时,需要考虑到时间复杂度、空间复杂度等因素。在实际应用中,数据结构和算法常常是密不可分的。通过对数据结构的理解和运用,以及对算法的学习和研究,可以帮助我们更有效地解决实际问题,提升编程能力。
算法与数据结构
0
2024-10-26