概念层次树

当前话题为您枚举了最新的概念层次树。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

概念层次树数据挖掘算法
通过分析概念层次树中的数据,发现隐藏的模式和知识。
概念层次树数据挖掘算法及其应用
基于概念层次树的数据挖掘算法广泛应用于大规模数据挖掘,通过对已有数值型数据概念提升算法的改进,提出新的算法。通过数据测试比较了新旧算法的性能,并提供了应用实例。
SQL 树和层次结构指南
乔·切尔科的 SQL 树和层次结构指南
利用概念层次结构挖掘 XML 数据
利用概念层次结构挖掘 XML 数据 该研究探讨了如何利用概念层次树来有效地挖掘 XML 数据。XML 数据本身具有层次结构,而概念层次树可以进一步组织和抽象这些数据,从而实现更深入、更精准的数据挖掘。
高效图像分割利器:层次树分割C++库
功能简介 该C++库为图像分割任务提供高效的层次树分割算法。它基于以下论文的研究成果,并使用C++11标准进行开发: T. Liu, C. Jones, M. Seyedhosseini, T. Tasdizen. A modular hierarchical approach to 3D electron microscopy image segmentation. Journal of Neuroscience Methods, 226, pp. 88-102, 2014. T. Liu, E. Jurrus, M. Seyedhosseini, T. Tasdizen. Watershed merge tree classification for electron microscopy image segmentation. ICPR 2012. T. Liu, M. Seyedhosseini, T. Tasdizen. Image segmentation using hierarchical merge trees. IEEE Transactions on Image Processing, 25, pp. 4596-4607, 2016. T. Liu, M. Zhang, M. Javanmardi, N. Ramesh, T. Tasdizen. SSHMT: Semi-supervised hierarchical merge trees for electron microscopy image segmentation. ECCV 2016. 使用方法 使用此库需要支持C++11标准的编译环境。具体的使用方法请参考库文档和示例代码。
数据挖掘中的决策树基础概念
决策树是一种用于分类问题的重要算法,通过学习目标函数f,将属性集合X映射到预定义的类标号y。分类任务的数据输入是一组记录,每条记录用元组(X, y)表示,其中X是属性集合,y是记录的类标号。决策树算法在数据挖掘中具有广泛的应用。
决策树的基本概念与模型评估
决策树是一种类似流程图的树形结构,每个内部节点代表在某一属性上的测试,每个分支表示一个测试输出,每个叶节点表示类或类分布。决策树的生成包括两个阶段:决策树构建和树剪枝。在构建过程中,从根节点开始,递归地根据选定的属性划分样本(必须是离散值)。树剪枝的目的在于检测并剪去训练数据中的噪声和孤立点反映的多余分枝。决策树通过将样本的属性值与树结构进行比较,对未知样本进行分类。
MATLAB代码层次分析-显着性树一种新颖的显着检测框架
MATLAB代码层次分析显着性树新颖性显着检测框架。此代码适用于论文: [1] Z. Liu,W。Zou,O。Le Meur,“显着性树:一种新颖的显着性检测框架”,IEEE Transactions on Image Processing,vol。23,no。5,pp. 1937-1952,2014年5月。仅限非商业用途。如果使用,请引用论文[1]。此代码需要使用VLFeat开源库,可从其官网下载,以及[2]的源代码。P. Arbelaez,M. Maire,C. Fowlkes,J. Malik,“轮廓检测和分层图像分割”,IEEE Transactions on Pattern Analysis and Machine Intelligence,vol。33,no。5,pp. 898-916,2011年5月。[2]的源代码可以在以下位置下载:运行代码(1)对于Windows,请首先使用[2]的源代码(注意,需将ST_win文件夹中的“im2ucm.m”替换为[2]中的原始文件),以生成与[1]中相同的结果。我们使用了调整大小因子0.5以提高运行速度。
过拟合与欠拟合的概念与决策树的评估
过拟合:模型在训练集上的表现良好,但在新数据上表现不佳,泛化能力差。 欠拟合:模型未能从训练集中学习足够的信息,在新数据上表现不理想。 决策树的评估:使用交叉验证或划分数据集的方法来评估决策树的性能。
MATLAB体积分割树代码-volsegtree 从原始体积数据生成体积段层次结构
MATLAB体积分割树项目基于原始体积数据生成体积段层次结构。先决条件包括Matlab的ncut代码以及Scipy/Numpy的运行环境。输入是一个三维立方体,其尺寸由x、y和z定义。运行RecursiveSeg(#seg, #seq)可以在Matlab中生成带有像素值作为标签的图像,这些标签编码了父子关系。例如,如果childID > #nseg(在当前级别),则parentID = childID - #nseg/2。软件示例目录包含了用于可视化和牙齿研究的层次结构图像。本软件仅限于研究和非商业用途。引用使用强度梯度直方图的多级分割探索体积的层次结构。作者:CY Ip、A. Varshney和J. JaJa,IEEE可视化和计算机图形学期刊,2012年,第18卷,第2355页。