花粉传播算法
当前话题为您枚举了最新的 花粉传播算法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
【支持向量机分类】基于花粉传播算法优化的最小二乘支持向量机实现数据分类Matlab代码.zip
涵盖智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划及无人机等多个Matlab仿真领域。
Matlab
0
2024-09-22
快速近邻传播聚类算法
一种快速有效的聚类方法,利用Silhouette指标确定偏向参数,结合局部保持投影方法删除数据冗余信息,处理复杂和高维数据。实验表明,该算法优于传统近邻传播算法。
算法与数据结构
2
2024-04-30
双向传播创新的深度学习算法示例
这里展示了双向传播,一种比传统的反向传播和自动编码器更快、更准确、更可靠的新型深度学习算法。借助这一算法,您可以在普通计算机上仅用20分钟就能够使用MNIST数据训练神经网络,无需依赖GPU。如果您选择采用本算法,请务必注明引用。
Matlab
1
2024-07-31
仿射传播聚类算法及自适应优化
仿射传播聚类算法 (Affinity Propagation Clustering, AP) 是一种高效的聚类算法,特别适用于处理大规模数据集和众多类别的情况。
算法原理:
AP算法通过数据点之间传递信息来识别数据中的聚类中心 (exemplars)。每个数据点都向其他数据点发送信息,表明其适合作为聚类中心的程度,并接收来自其他数据点的类似信息。通过迭代传递信息,算法最终确定一组代表性的聚类中心,并将其他数据点分配到相应的聚类中。
挑战与改进:
传统的AP算法在实际应用中面临两个挑战:
偏向参数难以确定: 算法的性能受偏向参数的影响,而最佳参数值难以确定。
震荡问题: 算法可能陷入震荡状态,无法收敛到稳定的聚类结果。
为了解决这些问题,研究者提出了自适应仿射传播聚类算法 (adAP),该算法通过以下策略优化AP算法:
自适应扫描: 扫描偏向参数空间,寻找最佳聚类结果。
自适应阻尼: 调整阻尼因子以消除震荡。
自适应逃离: 降低偏好参数值以避免震荡。
资源:
相关代码和文档可从网上获取。
算法与数据结构
3
2024-05-20
自由空间传播路径损耗模型LOS波传播特例
在自由空间中,最简单的波传播情况是直接视距(LOS)传播,没有地球表面或其他障碍物引起的阻碍。
Matlab
3
2024-07-20
有限差分传播方法FDBPM在自由空间中传播高斯脉冲的MATLAB开发
使用有限差分模拟在自由空间中传播1000微米的高斯脉冲。只需运行脚本,您将得到一个由以1微米步长传播的脉冲组成的表面。
Matlab
3
2024-07-22
技术传播与地理位置分析
这项技术融合了聊天数据库和国家地理代码,为理解技术传播模式以及地域相关性提供了新的视角。
数据挖掘
3
2024-05-12
社交网络影响力传播研究综述
社交网络影响力传播研究汇集了随机模型、数据挖掘、算法优化和博弈论等技术,主要涵盖影响力传播模型、学习和优化。通过总结计算机科学领域近年的成果,展现了该研究的综合应用。当前面临的挑战和未来研究方向也需要进一步探讨。
数据挖掘
2
2024-05-26
基于复杂网络的SIR传播模型(Matlab)
这个Matlab代码基于小世界网络实现,是经典的SIR传播模型。模型中,个体状态经历S(易感)、I(感染)、R(康复)三种阶段。康复者具有免疫力,不再感染。尽管代码实现基本功能,其简洁性有待提高,适合学习SIR传播模型的代码设计思路。
算法与数据结构
1
2024-07-18
移动通信网络中常用的传播模型
移动通信网络中常用的传播模型
传播模型是基于大量测量数据统计分析得出的无线信号传播经验公式。
奥村模型(Okumura Model)* 完全基于测量数据, 仅提供粗略的指导。
HATA 模型* 适用频率范围: 100-1500 MHz* 适用距离: 1-20 km* 存在环境修正值, 但未考虑地形影响。* 修正后的 HATA 模型适用频率范围: 100-3000 MHz
COST-231 模型* 基于奥村模型, 针对高频段传播特性进行了分析。* 适用频率范围: 1500-2000 MHz
LEE 模型* 适用于市区或郊区传播场景
射线跟踪模型* 适用于微蜂窝传播场景
统计分析
5
2024-05-15