顺序度量特征

当前话题为您枚举了最新的顺序度量特征。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

更新顺序特征选择函数改进的SEQUENTIALFS功能
在SEQUENTIALFS函数中新增了以下参数:'groups':一个单元向量,每个单元包含要作为单个变量处理的初始X矩阵列数,默认为空,即每列独立处理;'accelerate':介于0到1之间的数字,用于加速选择过程,默认为0,不进行加速。每次迭代时,将加速参数乘以每个新特征的误差分数,与上一次迭代的最佳得分比较,高于最佳特征加权误差的特征将被排除或包含在最终选择中,无需额外评估。
时间序列数据挖掘:特征表示与相似性度量研究方向
时间序列数据挖掘:特征表示与相似性度量研究方向 本研究深入探讨时间序列数据挖掘领域中特征表示和相似性度量的关键作用。通过对现有主要方法的全面回顾与分析,揭示其各自的优势和局限性,并在此基础上展望未来研究方向,为时间序列数据的特征表示和相似性度量研究提供新的思路。
基于多维形态特征的时间序列相似性度量方法研究
论文研究 - 基于多维形态特征表示的时间序列相似性度量。时间序列的特征表示和相似性度量是数据挖掘的核心基础,其质量直接影响后期挖掘的成效。提出一种通过正交多项式回归模型对时间序列进行多维形态特征表示的方法。该方法分析了特征维数对时间序列拟合效果的影响,并通过选取关键特征来捕捉序列的主要趋势,形成一种鲁棒的形态特征相似性度量方法,从而提升相似性度量的质量。实验结果显示,该方法不仅满足下界要求,且具有良好的下界紧凑性和数据剪枝效果,在时间序列聚类和分类等数据挖掘任务中表现出色。
稳健估计度量
利用 MATLAB 实施测量程序,通过调整权重的大小实现稳健估计。
Sql执行顺序详解
随着数据库技术的不断发展,SQL语句的执行顺序及其优化策略也日益重要。将详细探讨SQL语句的执行顺序、优化技巧以及实用的SQL使用建议。
度量值序列信息扩散估计
通过连续数据挖掘,形成规则度量值序列。通过参数估计,获取度量值特征参数,用于评估规则兴趣度,把握规则演化规律。提出了针对小样本的度量值扩散估计方法,并讨论了不同趋势下的序列参数计算。实验结果表明,该方法准确简便,抗干扰性强。
复杂度量生成器
该工具可生成复杂度度量。
SAM相似度度量方法详解
SAM相似度方法是一种主要用于计算光谱相似度的方法,尤其常应用于分析拉曼光谱。在众多文献中,SAM(Spectral Angle Mapper)被视为一种高效的度量工具,能够基于光谱向量之间的夹角来评估不同光谱的相似度。此方法尤其适用于多维光谱数据的分析和处理,在拉曼光谱数据比对方面表现出色。
顺序k均值算法实现
本项目通过分析不同背景舞者的动作模式,探寻舞蹈中肢体的语言,揭示舞者的动作特征。 该项目采用聚类技术(主要是k均值)分析动作模式,并使用k均值的变体——顺序k均值算法进行在线聚类,集成到实时交互式舞蹈表演组件中。 计算系统根据舞者的训练识别模式,形成反馈循环,促进舞者与机器的交流。该系统使用定制数据库,突出不同运动形式的差异,并重视运动选择过程。
Matlab开发数字顺序区分算法
Matlab开发:数字顺序区分算法。实现通用的FIR数字微分/积分器。