迪杰斯特拉算法

当前话题为您枚举了最新的迪杰斯特拉算法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Java实现的迪杰斯特拉算法
public static HashMap dijkstra(Node from) {\tHashMap distanceMap = new HashMap<>();\tdistanceMap.put(from, 0);\tHashSet selectedNodes = new HashSet<>();\tNode minNode = getMinDistanceAndUnselectedNode(distanceMap, selectedNodes);\twhile (minNode != null) {\t\t// 选定最小距离节点 minNode 进行跳转点\t\tint distance = distanceMap.get(minNode);\t\tfor (Edge edge : minNode.edges) {\t\t\tNode toNode = edge.to;\t\t\tif (!distanceMap.containsKey(toNode)) {""
探索图论中的迪杰斯特拉算法
迪杰斯特拉算法,图论中的经典算法之一,为带权有向图的单源最短路径问题提供解决方案。该算法从给定源点出发,逐步确定到达其余各顶点的最短路径。 迪杰斯特拉算法运作机制 迪杰斯特拉算法采用迭代方式,逐步确定从源点到所有其他顶点的最短路径。每次迭代中,算法选取一个尚未处理的顶点,该顶点距离源点的距离最短,然后更新与该顶点相邻顶点的距离。此过程持续进行,直至所有顶点均被处理完毕。 为实现上述过程,算法通常需要借助距离数组记录源点到各个顶点的最短距离,并利用标记数组记录各个顶点是否已被处理。每次迭代中,算法从距离数组中选取距离最小的未处理顶点,然后更新与其相邻顶点的距离。 迪杰斯特拉算法实现步骤 以下是迪杰斯特拉算法的基本实现步骤: 初始化距离数组和标记数组,将源点到自身的距离设为 0,源点到其他顶点的距离设为无穷大。将源点的标记设为已处理,其他顶点的标记设为未处理。 从距离数组中选择距离源点最短的未处理顶点,将其标记为已处理。 遍历所选顶点的邻接顶点,如果存在更短的路径从源点经由所选顶点到达该邻接顶点,则更新该邻接顶点的距离。 重复步骤 2 和步骤 3,直到所有顶点都被标记为已处理。 迪杰斯特拉算法可应用于各种场景,例如网络路由、交通导航和物流规划等,是一种高效且应用广泛的算法。
中兴迪杰斯特拉算法挑战赛回顾与优化方案
2018 年中兴迪杰斯特拉算法挑战赛受到美国制裁的影响被迫终止,官网也已关闭。该比赛的任务是在给定网格中填充 1000 条链路,每条链路有三种选择,目标是在一分钟内尽可能降低网格的最大链路利用率。 一种优化方案是从第一条链路开始,每次选择使得当前网格最大链路带宽利用率最小的链路,直到填充完所有链路。该方案得到的利用率约为 40。在此基础上,可以采用模拟退火算法进行优化,每次退火改变一条链路的选择,替换为另外两种选择之一。由于每次只改变一条链路,因此只需计算一次网格利用率,大幅减少了计算量,在相同时间内可以进行更多次的退火操作。通过调整模拟退火参数,最终可以将网格最大链路带宽利用率降低到 37.19 左右,在一分钟内逼近了工具测试得到的 37.08 左右的最优解。
堆优化迪克斯特拉算法详解与 C++ 实现
使用堆优化迪克斯特拉算法,可以求出加权有向/无向图中指定顶点到所有其他顶点的最短路径。适用于稀疏图且边权为正。 算法基于优先队列(小根堆),记录两个数据:当前顶点到源顶点的距离和当前顶点。它按以下原则更新距离:- 如果距离相同,优先处理任意顶点。- 仅记录以下情况的距离:- 起点到源顶点的距离为 0- 其他顶点到源顶点的最短距离和可直达的边 优先队列的入队和出队时间复杂度为 O(logn),而入队次数等于边数(有向图)或边数的两倍(无向图)。因此,总时间复杂度为 O(ElogE),其中 E 为边数。
Matlab开发 - 奈奎斯特图绘制
Matlab开发中的奈奎斯特图函数已经优化,提供更有效和互动性更强的功能。
贝尔特拉米滤波器非线性滤波器的贝尔特拉米流应用
介绍了贝尔特拉米滤波器,它是一种遵循贝尔特拉米流的非线性滤波器。该滤波器基于JJ费尔南德斯和JM(2010年)的研究,用于实时电子断层扫描的三维特征保留降噪。
遗传算法研究综述_马永杰.pdf
系统研究了遗传算法在国内外的编码策略、遗传算子、参数确定、收敛性及其在新兴应用领域中的最新进展。通过对近年来大量研究文献的统计分析,揭示了遗传算法研究的热点和未来发展方向。
Matlab开发-布茨特拉普生存概率和危险率
Matlab开发了一个简单的脚本,可从CDS中引导生存概率和危险率。
Matlab中奈奎斯特图代码的应用与分析
Matlab中奈奎斯特图代码Automatic_Control_Systems-Matlab-自动控制系统课程项目练习内容以及我的回答均使用希腊语。该代码及其注释为英文。基本上有5个部分:使用Ruth-Hurwitz算法确定系统是否稳定。将一个控制器添加到增益为K的系统中。在precision = 0.1的情况下,确定K,以使单一阶跃响应的过冲小于5%。评论控制器对系统的作用。对于您选择的K,请使用Ruth-Hurwitz和Nyquist图检查系统的稳定性。如果将零添加到输出信号,初始系统将会发生什么:(1 / a)(s + a)对于不同的a值?评论并得出结论。单一阶跃响应是输入信号。就像(3)一样,对于不同的γ值,研究在我们的系统输出信号上增加极点(γ s + 1)的影响。注释并得出结论。单一阶跃响应是输入信号。
纽约西纳特拉历史站点的数据库结构创建
欢迎来到纽约西纳特拉!我们将建立一个历史站点,需要创建以下数据库结构:我们有三个模型(以及对应的表)——地标、标题和数字(代表历史人物)。每个地标属于一个数字,而每个数字可以拥有多个地标。标题和数字之间是多对多的关系,因此我们需要一个连接表。我们的客户决定,我们的历史应用程序将重点关注历史人物。通过视图和控制器实现这些功能。我们的应用程序将提供地标的查看页面,用户可以创建新的地标。当用户创建或编辑数字时,他们也可以选择现有的地标和标题,或者创建新的地标和标题与数字相关联。我们的客户对标题不感兴趣,因此不需要构建标题控制器或视图。新的标题将仅在创建或编辑数字时创建。请编写迁移以创建以下表:数字ID、名称。1 - 罗伯特·摩西,2 - 艾尔史密斯。