采样率转换

当前话题为您枚举了最新的 采样率转换。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Matlab采样率转换实现
采样率转换:改变信号采样率,使其与原始信号不同。 应用:减少存储空间、增加细节和精度。 MATLAB实现方法:插值和抽取。
使用Matlab进行图像到任意分辨率视频的转换开发
Matlab开发项目能够高效地将图像序列转换为用户所需的任意分辨率视频。
图像重采样修改
关于Matlab编程的图像处理内容,提供对图像进行重采样的方法,以帮助广大用户。
Super-Resolution-Feedback-Network-System低分辨率图像向高分辨率转换的细节增强方法
细节增强的Matlab代码图像超分辨率反馈网络更新:我们建议的门控多反馈网络(GMFN)将出现在BMVC2019中。通过两个时间步长,每个时间步长包含7个RDB,与包括RDN的最新图像SR方法(其中包含16个RDB)相比,所提出的GMFN具有更好的重建性能。该存储库是我们建议的SRFBN的Pytorch代码。该代码由并基于进行开发,并在具有2080Ti / 1080Ti GPU的Ubuntu 16.04 / 18.04环境(Python 3.6 / 3/7,PyTorch 0.4.0 / 1.0.1,CUDA 8.0 / 9.0 / 10.0)上进行了测试。我们提出的SRFBN的体系结构。蓝色箭头表示反馈连接。有关我们建议的SRFBN的详细信息,请参见。如果您发现我们的工作对您的研究或出版物有用,请考虑引用: @inproceedings{li2019srfbn, author = {Li, Zhen and Yang, Jinglei and Liu, Zheng and Yang, Xiaomin and Jeon, Gwanggil}
期权杠杆率与隐含波动率计算
期权杠杆率计算 期权杠杆率衡量期权价格对标的资产价格变动的敏感程度。 公式: 期权杠杆率 = 期权价格变化百分比 / 标的资产价格变化百分比 隐含波动率计算 隐含波动率是市场对期权标的资产未来波动率的预期,通过期权价格反推得出。 方法: 通常使用期权定价模型(如 Black-Scholes 模型)进行迭代计算,找到与当前市场价格相符的波动率参数。
resampleX - 重采样时间序列
resampleX 可重采样时间序列数据,以更改其采样率。它通过使用指定的重采样间隔 alpha 来执行此操作。例如,要将每秒采样 1000 次的数据转换为每秒 1100 次,请使用 alpha = 1000/1100。resampleX 与 MATLAB 的“resample”函数类似,但速度通常更快。
Matlab学习采样的基础示例蒙特卡罗、拒绝和重要性采样
使用Matlab学习采样的基础示例:包括蒙特卡罗、拒绝采样、重要性采样。这些示例计算0-1区间内正方形区域的面积,展示了简化模型的应用。具体示例有:1. 均匀采样,2. 接受拒绝采样,3. 重要性采样。针对MCMC、MH和Gibbs采样,建议参考在线代码资源。注意,MCMC、MH和Gibbs采样的实现需另行查阅。
局部系统化采样工具
该 MATLAB 工具利用拉丁超立方体部分分层抽样方法,生成 n 维随机向量的随机样本。
通过线束对2D几何对象进行采样Eclipse形状的几何采样方法
主要用途展示:通过检测Eclipse边缘和入界区域的线束交点来采样网格图。坐标追踪并映射为图像。警告:随机射线束可能需要更长时间进行投影,具体取决于处理器性能。尚未整合扇形和平行射线束。仅投影了10行,行数可以在rayLinesScheme_parallel.m、rayLinesScheme_fan.m和rayLinesScheme_random.m中设置。帮助部分未包含。
吉布斯采样matlab代码-ihmm
iHMM采样库提供学习和采样有限HMM和无限HMM的代码。代码依赖于Tom Minka的lightspeed和fastfit软件包,这些库必须位于Matlab路径上才能使采样算法正常工作。 iHMM多项式输出: TestiHmmGibbsSampler.m:在具有多项式输出的iHMM上运行Gibbs采样器,演示如何使用iHmmSampleGibbs.m。使用命令“ help iHmmSampleGibbs”获取参数信息。 TestiHmmBeamSampler.m:在具有多项式输出的iHMM上运行光束采样器,演示如何使用iHmmSampleBeam.m。使用命令“ help iHmmSampleBeam”获取参数信息。 联合对数似然函数:p(s,y | beta,alpha,gamma,H)。 iHMM正态输出: TestiHmmNormalGibbsSampler.m:在具有正态输出的iHMM上运行Gibbs采样器,演示如何使用iHmmNormalSampleGibbs.m。