半监督学习

当前话题为您枚举了最新的半监督学习。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

机器学习半监督学习实战指南
机器学习领域的研究者和从业者,这份半监督学习教程将为你揭开这一技术的奥秘,带你领略如何利用有限的标记数据和大量的未标记数据提升模型性能。
半监督学习构建和应用半监督机器学习模型
利用LASSO进行特征选择,并采用半监督方法训练K-最近邻、支持向量机、随机森林和神经网络之一。
无监督学习大纲
什么是无监督学习 无监督学习的类型 聚类 降维 异常检测 无监督学习的应用 客户细分 模式识别 欺诈检测
数据挖掘概念漂移处理与半监督学习
无标记数据的概念漂移问题,说白了就是你手上的数据在变,标签还没跟上。面对这种情况,传统模型就有点扛不住了。幸运的是,研究圈已经搞出不少还挺实用的办法,像是半监督学习、概念漂移检测这些,搭配得当,效果还挺不错。 K 模式聚类算法那块挺有意思,它不是一股脑儿乱分,而是用决策树叶节点来搞聚类中心,分类效率也不赖。碰到噪声?也有一套——直接比较新旧概念差异,噪声一眼识破,模型更稳当。 另外几个流行算法也挺值得看:SEA偏简单但恢复慢,加权组合分类器在准确性上还不错,但多变场景下就有点吃力。要想稳,还得看CDRDT和树袋变异这些进阶玩法,用了多棵随机决策树,模型切换得更灵活。 推荐几个资源,都是干货:比
基于半监督学习的遥感图像分类研究优化
探讨了利用半监督学习方法进行遥感图像分类的研究,重点在于优化分类结果的准确性和效率。研究表明,通过引入半监督学习策略,可以显著提升遥感图像分类的性能,适用于各种实际应用场景。
基于自监督学习的3D人体姿态估计
介绍了一种基于自监督学习的3D人体姿态估计方法,该方法利用单目视频帧序列进行3D姿态生成,并采用自监督校正机制,通过保持3D几何一致性来增强模型性能。该方法的核心部分使用C++实现,并由深度学习工具箱Caffe提供支持。在Human3.6M、KTH Football II和MPII数据集上进行的实验结果表明,该方法具有良好的性能表现。
探索无监督学习:聚类、降维与特征提取
无监督学习是一类强大的机器学习方法,其核心在于从无标签数据中学习内在结构和模式。常见的无监督学习技术包括: 聚类分析: 将数据点划分为不同的组,使得组内相似度高,组间相似度低。 主成分分析 (PCA): 一种降维技术,通过线性变换将原始数据映射到低维空间,保留数据的主要特征。 稀疏编码与学习: 通过学习一组基向量,将数据表示为这些基向量的稀疏线性组合,从而实现特征提取和降维。
具有半监督学习的新方法结合地理距离和班级先验知识的应用
在许多实际的数据挖掘应用中,例如网络分类和关键基因选择,未标记的训练示例容易获取,但标记的训练示例昂贵。近年来,基于半监督图的权重方法受到关注。提出了一种新的方法,将问题的标签信息融入目标函数,并使用测地距离作为数据点差异的度量。同时,将班级先验知识集成到算法中,解决了本地和全局一致性学习问题。实验结果显示,在UCI数据集上,我们的方法优于传统算法。
半监督学习的自适应拉普拉斯图修剪实现libsvm MATLAB代码解析
介绍了基于自适应拉普拉斯图修剪的半监督学习算法ALGT,详细讲解了如何使用libsvm MATLAB代码实现该算法。如果您需要使用我们的代码,请遵循引用要求。
karateclub无监督学习图形的API导向开源Python框架(CIKM 2020)
空手道俱乐部(Karate Club)是一个无监督学习的扩展库,专注于图形数据。它集成了最先进的方法,可用于节点和图级别的网络嵌入技术,并提供各种重叠和不重叠的社区检测方法。该框架涵盖了广泛的网络科学、数据挖掘、人工智能和机器学习领域,适用于多个会议、研讨会和期刊。新引入的图分类数据集可从相关资源获取。如果空手道俱乐部及其数据集对您的研究有帮助,请考虑引用相关文献。