智能出行

当前话题为您枚举了最新的智能出行。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

旅客团体分类的出行目的
通过分析旅客团体的出行目的,研究人员可深入了解其行为模式。本研究对出行目的进行了分类,为进一步理解和预测旅客团体行为提供了依据。
面向共享出行的时空众包计算
童咏昕老师在CCF会议上的“面向共享出行的时空众包计算”PPT展示了如何利用时空众包技术优化共享出行服务。这一技术通过整合时间和地点信息,实现了更高效的出行方式,为城市交通提供了创新解决方案。
Flink在滴滴出行的应用与实践
Flink China Meetup社区线下Meetup·北京站PPT资料分享。余海琳介绍了Flink在滴滴出行中的应用与实践经验。
哈啰出行PostgreSQL的实际应用与优化探讨
云栖TechDay - 哈啰在上海站的活动中,周飞演讲了PostgreSQL在出行新业务场景中的应用。主要讨论了LBS的禁停区和规范停车区的GIS使用、订单指数增长的实时分析需求、逻辑复制和分区表应用中遇到的挑战,以及针对高QPS和数据库雪崩问题的解决方案。他还介绍了pgwatch2在RDS监控中的应用,以及利用RDS数据库审计日志的优势。
滴滴出行数据分析项目设计
Hbase是一个开源的、分布式的列式存储系统,构建在Apache Hadoop文件系统(HDFS)之上,提供实时读写能力,适合处理海量结构化数据。在滴滴出行数据分析项目中,Hbase用于存储爬取的原始运营数据,具备高并发读写、水平扩展和强一致性等特性,确保数据高效存储和快速访问。此外,使用Hive进行数据仓库处理和分析,利用HQL查询语言执行复杂的统计和计算。Sqoop作为数据迁移工具,负责将Hive分析的数据导入MySQL数据库,便于业务应用和报表生成。MySQL作为数据分析后的存储介质,管理和持久化处理过的结构化数据。最后,通过Python进行数据可视化,生成柱状图和饼图,直观展示滴滴出行数据的模式和趋势。
基于出租车轨迹的城市居民出行时空特征分析
研究基于出租车轨迹数据的城市居民出行时空特征,揭示居民出行的时间和空间分布规律。通过分析出租车轨迹和POI数据,研究发现深圳市居民出行存在早、中、晚高峰,以及空间上的局部密集和圈层递减现象。此外,研究还分析了居民购物和办公行为的出行时间和距离特征的相似性。GIS技术在居民出行时空特征分析中发挥关键作用,结合POI数据,能够量化分析出行规律。数据挖掘技术也能通过出租车轨迹和POI数据挖掘,揭示出居民出行的时空分布规律。研究结果为城市管理和规划提供了重要依据,帮助理解城市功能结构,推动智能化和信息化发展。
德国汽车用户一周出行日记数据分析
该数据集涵盖了6,465名德国汽车用户一周的出行日记。数据记录了参与者在整整一周内的行动行为,包括工作、购物、回家等不同场所的出行方式和行程距离。数据以15分钟的分辨率记录了行程细节,每列详细记录了位置和行驶距离。我们从中得出了名为'ParkingEventsData.csv'的数据集。
智能排名
利用人工智能技术,对内容或数据进行自动排序,提升信息的查找和呈现效率。
计算智能人工智能分支深度剖析
计算智能是人工智能的一个分支,涉及神经网络、模糊逻辑、进化计算和人工生命等领域。其研究和发展反映了现代科学技术多学科交叉与集成的重要趋势。计算智能系统具有计算适应性、容错性和接近人类速度与误差率的特点。神经计算则涵盖了人工神经网络的设计、训练和应用,具有并行处理、非线性映射和通过训练进行学习等特性。计算智能与人工智能的关系紧密但又有所区别,前者依赖于数值数据而不是知识精品。其应用广泛,包括模糊逻辑、进化计算、人工生命、机器人控制、自动控制、图像识别和自然语言处理等领域。
商业智能概览
本指南提供商业智能的全面概述,涵盖以下主题: 商业智能简介 商业智能实施和数据仓库 商业智能项目 商业智能寻源 商业智能产品 数据通信 数据挖掘