影响向量

当前话题为您枚举了最新的 影响向量。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

将影响向量映射到新的通用因素组件规模Matlab开发指南
根据冲击类型(致命、非致命或独立),方法指南与NUREG/CR-6268的核管理委员会一致。
影响因素探析
从多个视角深入探讨影响因素,为您提供全面深入的分析。
支持向量机源代码
支持向量机(SVM)二分类模型利用间隔最大的线性分类器定义于特征空间上,并以核技巧转化为非线性分类器。SVM学习策略的目标为间隔最大化,可转换为求解凸二次规划或最小化正则化合页损失函数。其学习算法则是求解凸二次规划的最优化算法。
向量的范数求解方法
利用 MATLAB 根据向量的定义和 norm 函数,可以分别计算向量的范数。
挖掘影响目标活动模式
通过分析不平衡数据中的影响目标活动模式,有助于找出重要指标。
大数据革命及其影响
2010年,全球数据量进入了ZB时代。据IDC预测,到2020年,全球数据量将达到35ZB。大数据实时影响着我们的工作、生活,甚至国家的经济和社会发展。大数据的特点包括数据量巨大、类型多样、流动速度快、价值密度低,其技术为问题的分析和解决提供了新思路和方法。大数据的研究已经成为热点,涵盖了大数据的概念、特征,以及国内外在数据挖掘方面的发展状况和面临的挑战。这些综述全面阐述了大数据,并为未来研究奠定了基础。
生成随机正交向量组利用Matlab开发随机正交向量生成器
编写一个Matlab程序,可以生成一组 m×n 的正交向量。程序的输入是两个标量 m 和 n,其中 n ≤ m。例如,输入 >> get_orthonormal(5,4),将产生如下正交向量: 0.1503 -0.0884 -0.0530 0.8839 -0.4370 -0.7322 -0.1961 -0.2207 -0.3539 0.3098 0.7467 -0.0890 0.7890 -0.1023 0.0798 -0.3701 -0.1968 0.5913 -0.6283 -0.1585。
绘制2/3D向量点处2D或3D向量绘制作为列向量矩阵-matlab开发
使用VARARGIN中的绘图格式选项,QUIVERMD(AX, V, VARARGIN)在坐标区对象AX内绘制矩阵V中列向量与矩阵X中列向量坐标的点。例如,假设x = linspace(0, 10, 20); y = linspace(0, 10, 20); [X, Y] = meshgrid(x, y); x = [X(:), Y(:)].'; v = [sin(x(1, :)); cos(x(2, :) ) ]; quivermd(gca, x, v)。有关详细信息,请输入“help quivermd”。
支持向量机:解析与实践
支持向量机全方位阐述了分类、回归等问题的基本理论、方法和应用,以直观方式解读问题实质和处理方法。为初学者提供了优化基础,涵盖理工科、管理类等领域的教材需求。
快速计算向量相关性
快速相关算法在C语言中高效、稳定地计算两个向量之间的相关性。将其编译为fastcorr.dll后可供Matlab调用。另提供备用函数SLOWCORRELATION,仅供参考,实际计算中效率较低。