网络演化模型
当前话题为您枚举了最新的 网络演化模型。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
演化网络加速分布式对偶平均算法
演化网络加速分布式对偶平均算法
该研究关注在演化网络环境下,如何利用加速分布式对偶平均算法优化模型参数。演化网络是指网络拓扑结构随时间动态变化的网络,这给分布式优化带来了挑战。
传统分布式优化算法在处理此类问题时效率较低。而加速分布式对偶平均算法通过引入历史梯度信息,能够更快地收敛到最优解。
研究重点关注如何在演化网络环境下实现该算法,并通过理论分析和实验验证其有效性。结果表明,相比于现有方法,该算法在收敛速度和精度方面均有显著提升。
Hadoop
6
2024-05-23
网络热点事件时空演化与可视化分析
面向网络热点事件舆情分析需求,本研究探索了开放、互动网络环境下用户行为及其对事件传播时空特征的影响。研究利用数据挖掘技术,从网络评论中提取热点事件的时空信息,并通过可视化方式呈现关注群体的地理分布,揭示事件舆论的动态演变,为舆情管理决策提供支持。
数据挖掘
2
2024-05-25
基于复杂网络的学生社交网络模型研究(2008年)
利用实证数据分析QQ网络,研究了基于Internet的学生社交网络模型。通过比较网络度分布和特征参数,发现QQ网络与传统BA模型存在显著差异。提出了一种新的网络演化模型,并通过统计分析验证其与QQ网络参数的高度一致性,为学生社交网络研究提供了新的理论支持。
统计分析
0
2024-08-18
无线传感网络节点能耗模型优化
讨论了无线传感网络中节点能耗的模型优化问题,提供了基于Matlab的源程序,可直接应用于实际环境。
Matlab
0
2024-10-01
数据挖掘的演化与应用背景
数据挖掘是从海量数据中提取有价值知识的过程,在计算机科学、数据库和人工智能领域具有重要角色。它不仅限于简单的数据检索,利用多种算法和技术深度分析数据,揭示隐藏的模式、趋势和关联,支持决策和业务优化。数据挖掘包括数据预处理、模式识别、模型验证等多个环节,任务涵盖关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等。其核心特点在于自动化和深度分析,使用决策树、神经网络、贝叶斯网络、支持向量机等算法进行模式发现。发展至今,数据挖掘应用已扩展至社交媒体、生物信息学和推荐系统等多领域。
数据挖掘
0
2024-10-14
MATLAB神经网络工具箱中Hopfield网络的反馈网络模型
Hopfield网络(反馈网络)的仿真:simuhop设计solvehop设计Hopfield网络solvelin设计线性网络rands产生对称随机数learnbp反向传播学习规则learnh Hebb学习规则learnp感知层学习规则learnwh Widrow-Hoff学习规则initlin线性层初始化initp感知层初始化initsm自组织映射初始化plotsm绘制自组织映射图trainbp利用反向传播训练前向网络trainp利用感知规则训练感知层trainwh利用Widrow-Hoff规则训练线性层trainsm利用Kohonen规则训练自组织映射
Matlab
2
2024-07-20
Matlab代码对随机SIR网络的影响随机SIR网络模型
此存储库包含Matlab代码,用于描述无标度随机网络上的随机SIR动力学。该模型的详细描述可以在Matia Sensi合著的论文“网络属性和流行病参数如何影响无标度随机网络上的随机SIR动态”中找到。我们欢迎您提供反馈意见和建议。如果您发现错误或有任何问题,请通过以下邮箱联系我们:sara.sottile@unitn.it, ozan.kah@gmail.com, mattia.sensi@unitn.it。通过配置模型,您可以选择幂律分布的指数来生成无标度网络,并决定传播速度、感染节点的初始数量及其位置(如中心、平均程度、外围或随机)。运行程序的方法是键入:./configuration.py [FLAG] [P]。设置参数的方法是:N [节点数量] alpha [幂律指数] number_of_infected [起始时的感染数量] end_time [最大时间]
Matlab
2
2024-07-13
BP神经网络详解神经网络数学模型解析
神经网络是由许多神经元之间的连接组成,例如下图显示了具有中间层(隐层)的B-P网络。BP神经网络是一种数学模型,其详细解析如下。
算法与数据结构
2
2024-07-17
MATLAB图与网络模型:实例与编程
MATLAB图与网络模型:实例与编程
本章深入探讨图与网络在数学建模中的应用,并结合MATLAB编程,提供实际案例的解决方案。
主要内容包括:
图的基本概念与表示方法
网络流问题建模与求解
最短路径问题建模与求解
最小生成树问题建模与求解
应用实例:交通网络优化、物流配送规划等
通过学习本章内容,您将掌握使用MATLAB构建和分析图与网络模型的技巧,并能够应用于解决实际问题。
算法与数据结构
6
2024-05-12
基于复杂网络的SIR传播模型(Matlab)
这个Matlab代码基于小世界网络实现,是经典的SIR传播模型。模型中,个体状态经历S(易感)、I(感染)、R(康复)三种阶段。康复者具有免疫力,不再感染。尽管代码实现基本功能,其简洁性有待提高,适合学习SIR传播模型的代码设计思路。
算法与数据结构
1
2024-07-18