数据抽取转换加载

当前话题为您枚举了最新的 数据抽取转换加载。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

数据加载管理工具-数据抽取技术及其应用
数据加载管理工具支持多种数据抽取与加载方法,包括外购的软件工具以及为特定需求编写的程序、存储过程和脚件。
数据抽取转换装载工具Kettle使用文档
Kettle是数据抽取、转换、装入和加载工具,简称水壶。该工具帮助用户实现数据处理需求,如从各种来源提取数据,转换数据格式,并装入到指定目的地。
数据抽取转换装载(ETL)综述及工具比较
ETL即数据抽取(Extract)、转换(Transform)、装载(Load)的过程,在数据仓库建置过程中,资料整合转换(ETL)是最花费时间、人力的,约占整个项目的60%-70%左右。一家企业除了在不同的成长阶段所留下来历史资料,还包括使用者所产生的大量资料,及对外部所取得的资料,这些信息可能来自不同的数据库平台,或一些特定的档案格式。而ETL就是要将各个不同的数据文件或数据库所撷取的资料,根据企业之需求及数据仓库Model的设计,转换成正确的信息,清除重复不需要的资料,转至统一的数据库中,保留在企业内以利后续使用。
数据抽取的实现
数据抽取通常从远程系统中提取数据,涉及各种方法,包括使用SQLPlus、OCI/ProC程序、Oracle UTIL_FILE、Oracle Export Utility等。
ETL数据抽取工具对比
在ETL过程中,数据抽取是至关重要的第一步。目前市面上已有不少成熟的工具可以辅助完成这一任务,以下列举一些并进行简要对比: | 工具名称 | 主要功能 | 适用场景 ||---|---|---|| Sqoop | 关系型数据库数据导入导出 | Hadoop/Hive生态 || Flume | 实时数据采集和传输 | 日志收集、事件流处理 || Kafka Connect | 连接各种数据源和目标系统 | 构建数据管道 | 选择合适的工具需要根据具体的数据源、目标系统和性能需求等因素综合考量。
优化数据仓库抽取程序
数据仓库抽取程序可以有效地将数据从高性能的联机事务处理系统中提取出来,以便在需要整体分析数据时与联机事务处理性能不冲突。通过数据仓库抽取程序,数据可以从联机事务处理环境中移出,从而改变数据管理的方式。
ODI数据抽取实战:通知数据同步
ODI通知数据同步步骤: 扫描通知接口表: 获取通知时间。 提取源数据: 根据通知时间从源表中提取相关数据。 插入临时表: 将提取的源数据插入临时表。 清理目标数据: 删除目标表中与临时表数据时间相同的数据。 同步数据: 将临时表的数据插入目标表,完成数据同步。
Oracle数据库10g中的数据提取、转换和加载(ETL)技术详解
详细探讨了Oracle数据库10g中数据提取、转换和加载(ETL)的基础架构,帮助读者深入理解相关技术。
Informix 高效数据加载方案
借助 High Performance Loader (HPL),Informix 数据库能够实现高速数据导入与导出,显著提升数据处理效率。
Matlab数据加载到Pandas
使用Python处理Matlab格式数据(.mat文件)时,可以使用scipy.io库中的loadmat函数轻松实现。 步骤: 导入库: from scipy.io import loadmat 加载数据: data_set = loadmat('data_set.mat') 将'data_set.mat'替换为您的.mat文件名。 loadmat函数将数据读取为字典类型,存储在data_set变量中。 访问数据: 字典的键值取决于.mat文件的结构。 通过查看字典的键值来了解数据的组织方式。 可以使用Pandas DataFrame处理加载的数据。