灰关联度分析
当前话题为您枚举了最新的 灰关联度分析。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Matlab灰色关联度算法源码下载
灰色关联度算法的基础代码可以在这里下载,适用于Matlab环境。灰色关联度分析是一种用于数据关联度分析的方法,通过模糊化处理实现数据之间的关联度量化。这份源码提供了实现灰色关联度分析的基本功能,适合需要进行数据关联分析的科研工作者和学生使用。
Matlab
0
2024-08-22
基于灰关联挖掘的铝电解控制算法
文章提出一种适用于铝电解工业控制的灰关联度挖掘框架,并设计了Gray-CT L挖掘算法。该算法将计算灰关联度和挖掘灰关联规则分为两个独立部分,通过对电解槽生产数据进行分析,获得了影响温度的因素。
数据挖掘
6
2024-05-01
基于灰关联规则的回转窑火焰图像检索方案 (2008)
将数据挖掘中的灰关联分析 引入 基于内容的图像检索 中,提出一种基于灰关联度的回转窑火焰图像的检索方法。通过分析火焰图像特征值,并结合生产运行数据挖掘得到关联规则;应用灰关联度作为加权因子计算被检索图像与数据库中图像的相似度,从而得到一系列相近检索结果;根据用户的相关反馈,查询得到更优结果;设计和实现了检索系统的原型机,并应用从某氧化铝厂采集的图像和生产数据进行图像检索实验。实验结果表明:该方法能够较快而有效地从图像数据库中检索得到较满意的结果。**
数据挖掘
0
2024-10-26
基于兴趣度的关联规则在学术分析中的应用
在关联规则经典算法Apriori的基础上,分析并将其应用于学术分析系统。发现并解决了现有系统中的问题,通过增加兴趣度阈值提升了关联规则在数据挖掘中的准确性,有效减少了无效规则的生成,为学术选课系统的优化提供了重要支持。
数据挖掘
2
2024-07-17
关联分析.ppt
关联分析基本概念及购物篮分析
Apriori算法及FP树
数据挖掘
4
2024-05-23
关联规则度量:支持度和可信度
规则度量支持度和可信度可用于找出符合最小支持度和可信度条件的规则。
支持度衡量一次交易中同时包含规则中所有项的可能性。
可信度衡量在包含规则中前提项的交易中,结论项出现的条件概率。
例如,若最小支持度为 50%,最小可信度为 50%,则可能获得以下规则:
A → C (支持度:50%,可信度:66.6%)
C → A (支持度:50%,可信度:100%)
这意味着:
购买尿布的客户中有 50% 同时购买了啤酒。
购买尿布和啤酒的客户中有 66.6% 同时购买了啤酒。
购买啤酒的客户中有 50% 同时购买了尿布。
购买尿布和啤酒的客户中有 100% 同时购买了尿布。
算法与数据结构
2
2024-04-30
关联规则分析简介
关联分析挖掘大数据中相关联系,发现规律和模式,应用于商业决策。如购物篮分析、跨品类推荐、货架布局优化、联合促销等,提升销量、改善用户体验。
数据挖掘
2
2024-05-27
数据挖掘中支持度递减的关联规则探索
在数据挖掘领域,支持度递减是一个重要的概念。它指的是随着数据集中项目集的大小增加,支持度递减的规则开始显现。这一现象揭示了在大数据背景下关联规则的变化模式。
数据挖掘
1
2024-07-25
灰色关联分析MATLAB程序
灰色关联分析MATLAB代码的计算方法参考文献包括王宁练的研究,探讨了冰川平衡线变化的主导气候因子。
Matlab
0
2024-09-25
《RapidMiner数据分析与挖掘实战》第8章关联分析与关联规则
关联规则分析是数据挖掘中非常重要的一种方法,从数据集中发掘各项之间的潜在关联关系,这些关系并未在数据中明确显示。 8.1.1 常用关联规则算法列出了几种常见的关联算法,如表8-1所示。
算法与数据结构
2
2024-07-12