先验分布

当前话题为您枚举了最新的先验分布。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

分类回归树节点先验概率选项-数据挖掘原理与SPSS-Clementine应用宝典
分类回归树节点先验概率选项允许在预测字符型目标字段时设定各类的先验概率。先验概率是目标字段每一类在训练集中的相对频率的估计值,反映了预测值出现之前各个可能目标字段值的概率。方法包括基于训练数据(默认)、对所有类均等设置等。这些选项是数据挖掘中的重要内容,图21-24展示了分类回归树节点先验概率选项的具体设置。
具有半监督学习的新方法结合地理距离和班级先验知识的应用
在许多实际的数据挖掘应用中,例如网络分类和关键基因选择,未标记的训练示例容易获取,但标记的训练示例昂贵。近年来,基于半监督图的权重方法受到关注。提出了一种新的方法,将问题的标签信息融入目标函数,并使用测地距离作为数据点差异的度量。同时,将班级先验知识集成到算法中,解决了本地和全局一致性学习问题。实验结果显示,在UCI数据集上,我们的方法优于传统算法。
细节增强的Matlab代码使用原型先验分类到零射学习 - 提交至BMVC15
在“archi_definitions”文件夹中可以找到细节增强的Matlab代码cd_Prototypical_Priors_BMVC15,这是BMVC15提交的代码。它涉及网络体系结构的定义,包括基准模型(基准_dnn)、基准ZSL模型(基准zz)、原型增强模型(prototyp_)以及原型增强的ZSL模型(原型?_zsl)。此外,还可以在log_files文件夹中查看到有关原型增强模型训练的详细日志文件。该代码与GTSD(德国交通标志数据集)、BELGA(徽标数据集)以及使用原型信息接受GTSD培训的3888模型相关。使用Matlab Caffe接口库的importCaffeNetwork可以加载示例模型,提供了多种模型提取选项,包括无HoG功能的基本模型(prototyp_deploy_baseloader.prototxt)以及包含完整功能(包括HoG功能)的完整模型(prototyp_deploy.prototxt)。
计算Wigner分布
通过 mywigner 函数计算复杂函数的二维 Wigner 分布。 输入电场 Ex 必须为列向量,且满足采样定理:- dy = 2π/X(其中 X 为所有 x 值的跨度)- dx = 2π/Y(其中 Y 为所有 y 值的跨度) 数据必须完全包含在 x(0)..x(N-1) 和 y(0)..y(N-1) 范围内。
使用Matlab计算积雪分布的beta分布概率密度函数
AMS_shape_orient_matlab存储库提供了用于计算积雪分布的Matlab代码,详细描述了在《大气科学》杂志文章中如何使用H函数分布来量化积雪形状和方向对降雪速度和自收集率的影响。
其他分布参数估计
对于其他分布参数估计,可以采用两种方法:1. 当样本容量充分大时(n>50),根据中心极限定理,近似服从正态分布。2. 使用 MATLAB 工具箱中提供的特定分布函数进行估计:- [muhat, muci] = expfit(X,alpha):在显著性水平 alpha 下,计算指数分布数据 X 的均值的点估计和区间估计。- [lambdahat, lambdaci] = poissfit(X,alpha):在显著性水平 alpha 下,计算泊松分布数据 X 的参数的点估计和区间估计。- [phat, pci] = weibfit(X,alpha):在显著性水平 alpha 下,计算 Weibull 分布数据 X 的参数的点估计和区间估计。
卡方分布及其应用
卡方分布是一种描述相互独立正态分布变量平方和的分布。在无人机三维航路规划中,它可用于评估航路方案的稳定性和可靠性。
Redis分布式锁
Redis实现分布式锁 Redis分布式锁是通过设置键值对来实现锁机制,锁的获取和释放都通过原子操作完成,保证了并发环境下锁的安全性。 联锁 联锁是同时获取多个锁,以确保操作的原子性。 秒杀商品测试 秒杀商品场景中,通过分布式锁可以控制并发访问,防止商品超卖。 多线程并发测试 多线程并发测试可以模拟高并发场景,验证分布式锁的性能和稳定性。 Redission锁测试 Redission是一个Java分布式锁框架,提供了基于Redis的分布式锁实现。
分布式算法基础
本导论介绍分布式算法的基础概念和原理。它涵盖了分布式系统中的同步和异步模型,通信协议和共识算法,以及容错和容错性技术。
多种概率分布及其应用
均匀分布:随机变量取值在指定区间内均匀分布,用 U(a, b) 表示。 正态分布:随机变量取值呈钟形曲线分布,用 N(μ, σ²) 表示。 指数分布:随机变量取值呈非对称分布,无记忆性,用 Exp(λ) 表示。 Gamma 分布:随机变量取值呈非对称分布,用于表示服务时间和零件寿命,用 G(α, β) 表示。 Weibull 分布:随机变量取值呈非对称分布,用于表示设备寿命,用 W(α, β) 表示。 Beta 分布:随机变量取值在 (0, 1) 区间内,用于表示概率和比例。