科学技术
当前话题为您枚举了最新的 科学技术。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
中国科学技术大学机器学习课程资料
这份资料包含中国科学技术大学机器学习课程的PPT、课后习题答案、往年考试试卷以及数据挖掘导论和推荐系统相关的PPT,授课教师为陈恩红老师。
数据挖掘
3
2024-05-21
MATLAB数值方法实现新的科学计算技术
包含各种MATLAB代码,如牛顿拉夫逊法、割线法等,以便于科学计算。较早的MATLAB提交中提供了详细解释。请访问链接查看更多,以便了解Newton Raphson、通用迭代法等数值方法的详细信息。
Matlab
0
2024-08-26
模式匹配技术在计算机科学中的应用
【模式匹配算法】是计算机科学领域中一项重要的技术,被广泛用于数据库查询、文本分析和生物信息学等领域。在数据库中,模式匹配技术能够高效地从大数据集中找出符合特定规则或模式的记录,极大地提升了数据检索效率。深入探讨了模式匹配算法的实现原理,并通过一个具体的C语言程序展示了其实现过程。程序的核心函数是NUM,通过输入主字符串和模式字符串,计算出模式字符串在主字符串中出现的次数。通过这个案例,读者可以理解模式匹配的基本操作及其在实际应用中的重要性。未来,我们还可以探索更复杂的算法,如KMP算法、Boyer-Moore算法和Rabin-Karp算法,它们在处理大规模数据时表现更为优异。
SQLServer
0
2024-08-25
计算机科学与技术数据库实验二报告
西北工业大学计算机学院的数据库实验二报告详细记录了本次实验的过程和结果。
SQLServer
2
2024-07-18
Spark助力数据科学
Spark:数据科学的强大引擎
Spark 凭借其分布式计算能力和丰富的工具生态,已成为数据科学领域不可或缺的利器。它能够高效处理海量数据,并支持多种数据科学任务,例如:
数据预处理: 使用 Spark 清洗、转换和准备数据,为后续分析打下坚实基础。
机器学习: Spark MLlib 库提供多种机器学习算法,涵盖分类、回归、聚类等领域,帮助您构建预测模型。
数据可视化: 结合其他可视化工具,将 Spark 分析结果转化为直观的图表和图形,洞察数据背后的规律。
Spark 的优势:
速度快: 基于内存计算,比传统 MapReduce 框架快数倍甚至数十倍。
易于使用: 提供 Python、Scala、Java 等多种语言 API,降低学习门槛。
通用性强: 支持批处理、流处理、交互式查询等多种计算模式。
如果您想在数据科学领域有所建树,学习 Spark 将会是一个明智的选择。
spark
2
2024-04-30
数据科学与大数据技术概览-深入解析第四章大数据生态与技术
中南大学张祖平老师的课件PPT,详细介绍了数据科学与大数据技术导论第四章的大数据环境与技术。内容涵盖了大数据在现代科技领域中的重要性和应用。
统计分析
0
2024-09-13
数据科学手册学习笔记
数据科学手册学习笔记,涵盖数据科学相关知识点和实践。
数据挖掘
4
2024-05-01
敏捷数据科学资料合集
包含 Agile Data Science 第一版中英文高清 PDF 和代码,以及第二版英文高清 PDF 和代码。
算法与数据结构
4
2024-05-12
数据科学入门书籍推荐
本书单为有志于从事数据科学的读者提供了全面指南,涵盖了从基础理论到实践应用的各个领域。
Hadoop
3
2024-05-20
数据科学驱动商业决策
近年来,数据科学在计算机领域扮演着越来越重要的角色。大数据、数据挖掘、机器学习、数据可视化等技术的发展,为企业带来了前所未有的机遇。企业积极引进数据人才,借助数据分析摆脱经验主义的束缚,进行精准预测,以期获得更高的商业回报。
数据挖掘
2
2024-06-30