实时数据流处理
当前话题为您枚举了最新的 实时数据流处理。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
实时数据处理工具——Storm高效处理实时数据流
Storm,作为一种实时流处理框架,自2016年以来一直在业界广泛应用。其高效处理实时数据流的能力,使其成为许多大型数据处理系统的首选工具之一。
Storm
0
2024-08-21
Kafka指南_大规模实时数据流处理_2017
本书全面系统地讲解了Apache Kafka的原理、架构、使用、实践和优化,适合初学者和专家阅读。内容涵盖了Kafka在消息总线、流处理和数据管道中的应用。
kafka
3
2024-04-29
使用Spark和Mongodb处理Twitter实时数据流的管道构建
通过Spark流处理Twitter实时数据,将数据存储于MongoDB中。利用tweepy API从Twitter提取数据,并过滤、存储有效信息如tweet和时间戳。数据流通过StreamListener实例到达MongoDB,最终经由Spark处理,生成实时分析。
NoSQL
1
2024-07-22
实时数据流绘图程序 - MATLAB激光雷达应用
这是一个基于MATLAB的激光雷达实时数据流绘图程序,经过实际测试验证可靠。需要进一步优化使用。
Matlab
2
2024-07-20
处理Kafka数据流
使用Spark Streaming处理Kafka数据流时,需要将 spark-streaming-kafka-assembly_2.11-1.6.3.jar 添加到PySpark环境的 jars 目录中。该jar包提供了Spark Streaming与Kafka集成所需的类和方法,例如创建Kafka DStream、配置消费者参数等。
spark
4
2024-04-29
深入探索实时数据处理: Storm流计算项目实战
项目概述
本项目深入探究Storm流计算框架及其生态系统,涵盖以下关键技术:
Storm: 实时数据处理的核心框架,提供分布式、高容错的流式计算能力。
Trident: Storm之上的高级抽象,简化复杂流处理拓扑的构建。
Kafka: 高吞吐量的分布式消息队列,用于可靠地传输实时数据流。
HBase: 可扩展的分布式数据库,提供实时数据的存储和检索。
CDH: Cloudera Hadoop发行版,提供Hadoop生态系统组件的集成和管理。
Highcharts: 用于创建交互式数据可视化图表,展示实时数据分析结果。
项目亮点
通过实际案例学习Storm流计算项目的设计和实现。
掌握Trident API,简化复杂流处理任务的开发。
了解Kafka、HBase等大数据技术在实时数据处理中的应用。
利用Highcharts实现实时数据的可视化分析。
目标受众
对大数据和实时数据处理感兴趣的技术人员。
希望学习Storm流计算框架的开发者。
寻求构建实时数据处理解决方案的数据工程师和架构师。
Storm
4
2024-04-29
Storm实时流处理流程
Storm的工作流程可以概括为以下四个步骤:
用户将Topology提交到Storm集群。
Nimbus负责将任务分配给Supervisor,并将分配信息写入Zookeeper。
Supervisor从Zookeeper获取分配的任务,并启动Worker进程来处理任务。
Worker进程负责执行具体的任务。
Storm
3
2024-05-12
MATLAB实时绘制CSI数据流的直播演示
这些文件主要用于在MATLAB中实时绘制CSI数据流。您需要了解如何提取和解析CSI数据。encode_csi_matlab文件夹包含用于解析CSI数据的MATLAB文件。log_to_file文件夹中的文件则用于通过TCP通道发送CSI数据。您可以使用gcc编译log_to_file.c,并通过sudo ./log命令发送数据到TCP服务器。如果需要保存发送的数据,可以通过sudo ./log save.dat实现。端口号默认为1234,可以根据需要修改。同时,您还可以修改IP地址以及广播CSI数据到多台计算机。
Matlab
0
2024-09-14
Spark Streaming实时数据处理详解
Spark Streaming是Spark核心API之一,专注于支持高吞吐量和容错的实时流数据处理。随着数据技术的不断演进,它在实时数据处理领域展现出强大的能力和应用潜力。
spark
3
2024-07-13
Storm实时数据处理技术详解
本书详细介绍了基于Storm的开发环境搭建和实时系统测试的实用方法及实战案例,以及应用最佳实践将系统部署至云端的方法。你将学习到如何构建包含统计面板和可视化功能的实时日志处理系统。通过集成Storm、Cassandra、Cascading和Hadoop,了解如何建立实时大数据解决方案用于文字挖掘。书中涵盖了利用不同编程语言在Storm集群中实现特定功能,并最终将解决方案部署至云端的方法。每一步都应用了成熟的开发和操作实践,确保产品交付的可靠性。
Storm
0
2024-10-12