SVM classifier

当前话题为您枚举了最新的 SVM classifier。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

MATLAB Classifier for PhysioNet Challenge 2020
二抽取代码MATLAB面向PhysioNet / CinC Challenge 2020的示例预测代码包含两个主要脚本来训练模型和对数据进行分类:train_model.m训练模型,您需要将模型代码添加到train_12ECG_model函数。此脚本执行所有文件的输入和输出,请勿编辑。driver.m是分类器,从train_model调用输出并执行文件输入输出,请勿编辑。请检查这些文件中的代码以获取输入输出格式。要创建和保存模型,编辑train_12ECG_classifier.m脚本,注意不要更改函数的输入参数或添加输出参数。所需模型和参数应保存在单独的文件中。示例中附加脚本get_12ECG_features.m用于提取特征。运行分类器需编辑run_12ECG_classifier.m脚本,该脚本以单个记录作为输入并输出预测结果。
VUS-Voiced/Unvoiced/Silence_Training_Bayesian_Classifier_MATLAB
本练习使用四个程序来训练贝叶斯分类器(使用嵌入低级噪声和杂项声学效果(例如唇拍、砰砰声等)背景中的11个语音文件的指定训练集),并将来自独立测试话语的信号帧分类为属于以下三个类别之一: 1. Class 1 –沉默/背景 2. Class 2 –清音 3. Class 3 –浊音。使用TADSP第10.4节中讨论的贝叶斯统计框架。每帧信号相关的特征向量由五个短时语音分析参数组成,即: 1. 短时对数能量, 2. 每10毫秒间隔短时间过零, 3. 单位采样延迟的归一化自相关, 4. 第一个预测系数为p = 12极LPC分析, 5. p = 12 LPC分析的归一化对数预测误差。
SVM 多领域应用
SVM 在文本分类、图像分类、生物数据挖掘、手写识别等领域广泛应用。 SVM 潜力巨大,可成功应用于更多未知领域。
经典SVM算法Matlab实现
这是一个经典SVM算法的Matlab程序,适用于各种利用Matlab进行数据SVM仿真的实验。
SVM优化策略综述基于SMO算法的多核SVM模型探索与应用
在matlab开发环境中,利用SMO求解器和不同的内核(包括线性、rbf、多项式、sigmoid)创建SVM模型。通过在svm_test.m文件中运行示例,训练集的特征矩阵x(mxn)包含m个样本和n个特征,带有对应的标签向量y(mx1)。SMO求解器使用常数C和容差参数tol来优化模型训练。选择内核类型('l'代表线性,'r'代表rbf,'p'代表多项式,'s'代表sigmoid),并根据不同内核类型调整额外参数(如gamma、偏移和功率)。训练结果通过alpha系数和阈值b来确定分类边界。SMO算法支持从训练好的SVM模型中预测测试集样本的标签。
KPCA+SVM仿真源代码
使用Matlab实现的KPCA+SVM仿真源代码,用于非线性分类任务,可提供实用参考。
支持向量机(SVM)应用详解
详细介绍了使用Matlab编写的支持向量机分类器代码,用于模式识别和分类任务。支持向量机作为一种强大的机器学习算法,在各种应用场景中展示出了其高效性和准确性。通过该代码,用户可以深入了解支持向量机在模式识别中的实际应用。
陆振波SVM代码解读
该代码提供了陆振波SVM算法的详细注解,展示了其内部运作方式,为数据挖掘研究提供了宝贵的案例。
Matlab_TLAB_SVM_Regression_Integration
Matlab开发 - 在TLAB中使用ekasSVM回归函数。演示如何将WEKA的ML库导入Matlab,并使用SVM回归。
数据挖掘利器:C# 版 SVM
热衷数据挖掘的 C# 开发者不容错过!这款 SVM 库将助你一臂之力。