主题建模

当前话题为您枚举了最新的主题建模。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

LDA模型(MATLAB版)- LDA:旧式主题建模(Python版)
本项目通过Gibbs采样推理实现LDA(潜在狄利克雷分配)。 优势: 契合度 加速Gibbs采样过程 参考: @article {heinrich2005parameter,title = {用于文本分析的参数估计},作者= {Heinrich,G.},journal = {Web:,year = {2005}}} 注意: Gibbs采样速度较慢,难以检查收敛性。 结果不佳,可能是语料库规模较小所致。 不同运行的结果可能有很大差异。 主题建模工具: David Blei的收藏 UMass的Mallet 斯坦福主题建模工具箱 Mark Steyvers和Tom Griffiths编写的MATLAB主题建模工具箱 LDA-J R包 topic-modeling-tool(基于Mallet的图形用户界面工具)
协议主题数据仓库模型介绍及建模过程
协议主题(Agreement)数据仓库模型是金融机构用来管理客户契约关系的数据模型。该模型涵盖了账户、合同、存款账户、贷款账户、凭证、投资成交单、卡访问介质、申请单等协议范畴。该模型用于存储和处理协议数据,以支持产品、事件、渠道、当事人、资产、财务、区域、营销、内部机构等方面的业务分析和决策制定。
基于TD数据仓库的LOCATION主题分类与建模
LOCATION主题分类与建模 在TD数据仓库中,LOCATION主题涵盖多种地址类型及其相关信息,为地理位置分析提供基础数据支撑。 地址分类: 广义地址 地区地址 电子地址 街道地址 物理地址 电话地址 物理邮箱地址 地址关联信息: 地址之间的关系 地区的经济指标 地区的黄页信息 地址的描述信息 建模过程: LOCATION主题的建模采用维度建模方法,构建地址维度表和事实表,以满足不同场景下的查询需求。维度表包含地址的各个属性,如国家、省份、城市、街道等;事实表则存储与地址相关的业务数据,例如订单数量、销售额、人口数量等。 通过对LOCATION主题进行分类和建模,可以有效地组织和管理地址信息,为企业决策提供数据支持。
TD数据仓库模型介绍及建模过程的产品主题特征
产品主题的特征在TD数据仓库模型中扮演重要角色,它们定义了数据存储和处理的方式。在建模过程中,确保这些特征能够充分体现产品的核心价值和功能。
PARTY主题与其他主题的关联关系
PARTY主题与其他主题的关联关系 当事人与账户的关系 外部编号 历史和事件的关系 与产品的关系 地址信息历史
当事人主题Party-TD数据仓库模型详解及建模流程
当事人主题(Party)指银行服务的各种对象,包括个人或对公客户、潜在客户、代理机构、雇员等。业务系统中的个人客户、对公客户、支付交易对手、潜在客户等都是当事人的范畴。详细介绍了Party-TD数据仓库模型的建模过程及其应用。
自定义 RStudio 主题
该主题根据 Spyder 的风格修改,提供给偏好 Spyder 风格的用户。使用说明请查阅相关文档。
WallPress 主题:瀑布流布局
该主题采用瀑布流布局设计,为用户提供独特的内容浏览体验。主题现已开放分享,欢迎下载体验。
客户信息主题维度设计模型
客户基本信息模块 模块功能: 用于分析客户数量和客户属性。 事实表: 客户信息事实表 度量: 客户数量 数据粒度: 每个客户每月计算一次收益,事实表每条记录代表一个客户的属性。事实表存放一年以内的数据,超过十年的数据按月滚动,最初的数据汇总后从事实表卸出。 相关维度: 客户详细资料维度 客户性别维度 客户年龄层次维度 客户在网时间维度 客户消费层次维度 客户信用度层次维度 是否大客户维度 交费类型维度 地理维度 客户流失概率层次维度 客户挽留价值层次维度 成为大客户概率层次维度
电信行业数据挖掘应用主题
客户洞察与分析- 客户行为细分模型- 客户流失倾向预警模型- 价格敏感度模型风险管理与信用评估- 客户信用评分模型营销优化与精准推荐- 交叉销售模型- 营销效果预测模型- 精确营销模型