预判决频偏估计算法

当前话题为您枚举了最新的预判决频偏估计算法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

基于预判决的频偏估计算法原理-高维数据挖掘中特征选择的稳健方法
基于预判决的频偏估计算法(PADE算法)是一种应用于相干接收机中的前馈式全数字频偏估计方法,主要通过模拟预判决来估计当前符号的频偏,结合环路滤波器抑制噪声影响,有效消除载波频偏对相位调制信号的影响。与传统四次方频偏估计算法不同,PADE算法依赖于前一个输入符号的频偏估计结果,以优化当前符号的频偏估计,最终通过减去估计值来修正频偏引起的相位分量。
四次方频偏估计算法的参数适应性仿真分析
四次方频偏估计算法的参数适应性仿真分析 本节主要研究四次方频偏估计算法中唯一参数——平均符号块长度M对算法性能的影响。理论分析表明,在频偏变化可以忽略不计的情况下,更大的M值有助于提高频偏估计精度。为了验证这一结论,我们设计了如下仿真实验。 仿真数据源: VPI 7.0 数据源 112Gb/s PM-DQPSK 传输系统 OSNR=16.5dB 色散系数(CD)= 100ps/nm 偏振模色散(PMD)= 1ps 发射端激光器线宽 = 1MHz 本振激光器线宽 = 100KHz 载波频偏大小设置为多个不同的值 仿真参数: 采用基于VV相位估计算法(详见4.3节)与四次方频偏估计算法进行对
比较MATLAB中扩展汉明码的硬判决、软判决和SPA算法译码
这是一个关于(8,4,4)扩展汉明码的程序,已经成功进行了调试。算法的复杂度适中,并且经过实际测试验证过!
分布估计算法详解及Matlab实现示例
详细介绍了分布估计算法的核心原理,并附带一个基于Matlab的实例代码。
基于质量评估的迭代缝合估计算法源码
图像拼接领域的质量评估-based iterative seam estimation算法,采用Matlab编写以便于复现。附带公共图像拼接数据集,适用于图像拼接与图像配准研究。详细使用说明请参阅ReadMe文件。
最小均方误差信道估计算法的 MATLAB 实现
该 MATLAB 实现展示了最小均方误差 (MMSE) 信道估计方法的实用实现,该方法用于估计无线通信系统中的信道特性。此实现通过矩阵计算和优化算法提供了准确且高效的信道估计。
维特比译码误码率计算软硬判决的优化方法
在Matlab中,关于维特比译码的误码率计算方法已经优化,包括软硬判决两种方式以及非卷积码的应用。
HyperLog:一种近似最优基数估计算法的分析
HyperLog 算法在基数估计领域展现出接近最优的性能。本研究深入分析 HyperLog 算法的运行机制,揭示其如何在有限的内存资源下,高效地估计大型数据集的基数。
使用Matlab实现修正的正弦波频率估计算法
随着技术的进步,现在可以使用Matlab来实现修正的正弦波频率估计(RIFE)算法,这在信号处理和通信工程中具有重要意义。该算法能够准确估计正弦波的频率,为数字信号处理领域提供了强大的工具。
MATLAB开发混合时变参数系统的参数估计算法
使用范数正则化和期望最大化技术,介绍了在MATLAB环境下开发的SON-EM算法,用于混合时变参数系统的参数估计。