重复剪辑近邻法
当前话题为您枚举了最新的 重复剪辑近邻法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
基于重复剪辑近邻法的决策树性能优化
针对决策树算法易受样本噪声和混杂区域干扰的问题,可以利用重复剪辑近邻法进行优化。该方法能够有效识别并剔除训练样本集中符合特定条件的噪声数据,清除混杂区域中后验概率较小的类别样本,进而构建更符合贝叶斯分类准则的类别边界。通过筛选后的训练样本集构建决策树,能够在保证分类准确率的前提下,显著降低决策树的规模,增强其可理解性和应用价值,最终实现决策树性能的提升。
数据挖掘
6
2024-05-25
Matlab实现重复剪辑代码——提高分类准确率
当不同类别的样本在分布上有交迭部分时,分类的错误率主要来自于处于交迭区中的样本。如图所示,这些样本往往由于近邻法的限制,导致分类错误。具体来说,交界处的样本相互穿插,给分类算法带来困难。为了改善这一情况,可以通过对现有样本集进行剪辑,筛选出处于交界区域的样本,从而有效减少样本量,同时提高识别准确率。利用Matlab实现这一过程,可以优化分类效果,减少计算负担。
Matlab
7
2024-11-06
快速近邻法分类程序的Matlab实现
介绍了快速近邻法分类程序在Matlab中的实现方法。
Matlab
9
2024-08-29
改进K-近邻法的文本分类算法分析与优化
文本自动分类技术是数据挖掘的重要分支,K-近邻法作为常见的文本分类算法之一,其存在一些局限性。基于对K-近邻法的分析,针对其不足提出了改进方案,在保证判定函数条件的前提下,优化了算法,避免了K值的搜索过程,从而降低了计算复杂性并提升了效率。实验证明,改进后的K-近邻法在文本分类任务中具有显著的效果。
数据挖掘
7
2024-08-03
Matlab开发视频剪辑为子视频
此功能允许用户将输入的视频按需分割为多个子视频。用户可通过函数输入或GUI控制(使用imrect函数)定义每个片段的尺寸。这一功能可以看作是concatVideo2D的补充,特别适用于需要一次处理多个子视频的场景。与Matlab的imcrop函数结合使用,可以通过apply2VideoFrames.m函数实现类似的效果。
Matlab
10
2024-07-19
重复按钮演示
这是一个Matlab开发的演示程序,展示了如何创建一个重复按钮(ToggleButton)。该按钮的回调函数会持续执行,直到按钮再次被按下为止。
Matlab
14
2024-05-21
数据科学WiFi定位系统的k近邻与加权k近邻位置预测
案例包括R语言程序调试、开发文本数据处理与挖掘的函数、各种可视化图集(具体可参考博客中展示的一部分),k近邻与加权k近邻,以及最终的模型预测。数据量为140多万记录,针对不同的预测变量进行了汇总。自己编写了针对k近邻与加权k近邻的十折交叉验证程序,并进行了可视化展示。整个项目过程全程没有使用R语言中现有的包,所有代码都是独立编写的。对于想要提升R编程能力的同学,这个项目将是一个绝佳的选择。谢谢大家支持!
数据挖掘
9
2024-10-27
快速近邻传播聚类算法
一种快速有效的聚类方法,利用Silhouette指标确定偏向参数,结合局部保持投影方法删除数据冗余信息,处理复杂和高维数据。实验表明,该算法优于传统近邻传播算法。
算法与数据结构
8
2024-04-30
K近邻分类算法实现代码
K近邻(K-Nearest Neighbors,简称KNN)是一种机器学习算法,被广泛应用于分类和回归问题。该算法基于实例学习,通过找出训练集中与新样本最接近的K个样本,利用它们的类别进行预测。详细介绍了KNN算法的实现步骤:数据预处理,距离计算,最近邻选择,类别决策以及评估与优化。此外,提供了K-近邻法分类代码的下载链接,可以帮助读者理解并实现该算法。
数据挖掘
5
2024-09-23
消除重复数据记录
从姓名、性别和年龄的表中,只显示具有唯一姓名的数据记录。
MySQL
11
2024-05-30