密度
当前话题为您枚举了最新的 密度。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
金融模型风险密度探索
利用 MATLAB 开发的高级金融模型,深入了解期权定价中的风险中性密度。
Matlab
2
2024-05-25
密度聚类数据集
密度聚类是一种无监督学习方法,通过分析数据点之间的相对密度来识别数据集中的聚类结构。这种方法特别适用于处理不规则形状、大小不一且存在噪声的数据集。在名为\"密度聚类数据集\"的压缩包中,包含多个经典数据集,用于测试和比较各种基于密度的聚类算法的效果。密度聚类算法的核心思想是将高密度区域识别为聚类,而低密度区域则作为聚类间的过渡地带。著名的算法包括DBSCAN,它能够发现任意形状的聚类。除了DBSCAN,还有OPTICS和HDBSCAN等改进型算法,用于理解数据的复杂结构和自动检测不同密度的聚类。这些数据集广泛应用于图像分割、天文数据分析和社交网络分析等领域。
算法与数据结构
2
2024-07-16
基于快速查找和密度峰值的峰值密度聚类matlab代码
这个资源库包含了我对《基于自适应密度的无监督高光谱遥感图像聚类》论文的实现,该论文参考自2014年的《Clustering by fast search and find of density peaks》。我在MATLAB中进行了大量修改,以优化参数设置和算法框架。
Matlab
0
2024-09-28
密度峰值聚类 MATLAB 实现
提供一种基于密度峰值快速搜索,用于发现聚类中心的聚类算法 MATLAB 源代码。
算法与数据结构
3
2024-05-12
麦克风密度几何设计
基于麦克风密度的统计分析,优化阵列几何形状以提升沉浸式环境中语音信号波束形成性能。提出目标函数规则的优化算法,综合声源分布先验知识和声学场景概率描述,构建具有出色SNR性能的阵列。通过变异常规配置,克服常规阵列局限性,提供易于安装且具有良好SNR结果的阵列。
统计分析
6
2024-05-20
密度峰值聚类算法源码
该代码是基于 Rodriguez A, Laio A 发表在 Science 上的论文中提出的密度聚类算法实现。
算法与数据结构
3
2024-05-25
用颜色表示数据密度的散点图
该函数绘制一个散点图,使用颜色表示数据的密度。它使用三种不同的方法来计算数据密度:圆形、正方形或 Voronoi 单元。用户可以选择要使用的方法以及计算密度时要使用的半径。
Matlab
2
2024-05-30
使用核密度估计绘制散点图
这个功能利用核平滑函数计算每个点的概率密度估计(PDE),并且用颜色表示每个点。输入x表示X轴上的位置,y表示Y轴上的位置。varargin可用于向scatter函数发送一组指令,支持MarkerSize参数,不支持MarkerColor参数。输出h返回创建的散点对象的句柄。例如,生成数据x = normrnd(10, 1, 1000, 1); y = x * 3 + normrnd(10, 1, 1000, 1); 使用scatter_kde(x, y, '填充', 'MarkerSize', 100); 添加颜色栏cb = colorbar(); cb.Label.String = '概率密度估计'。
Matlab
0
2024-08-13
密度峰聚类算法Python代码通过快速搜索和密度峰查找进行聚类
最近在学习密度峰聚类算法,对/DensityPeakCluster的Python代码进行了改进,并打算基于此算法撰写论文。在GitHub上发现了这个项目,下载后加入了中文注释以便今后查阅。我从Alex Rodriguez和Alessandro Laio的论文《Clustering by fast search and find of density peaks》中学习并修复了原始DensityPeakCluster代码中的Bug。
Matlab
1
2024-07-29
Matlab中概率密度函数的应用
Matlab提供了多种有用的函数,其中包括处理概率密度函数的工具。这些函数能够帮助用户分析和处理各种概率分布,如正态分布、泊松分布等,为数据分析和模拟提供了重要支持。使用Matlab,研究人员和工程师可以快速准确地计算和可视化不同分布的概率密度函数。
Matlab
0
2024-08-30