大学模式
当前话题为您枚举了最新的大学模式。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
大学模式建表语句
数据库系统概念原书第六版大学模式的建表语句和数据由db-book.com官方提供
MySQL
6
2024-04-29
模式识别入门:清华大学课程资源
这份清华大学PPT资源,带您探索模式识别的精彩世界,涵盖从贝叶斯分类器到聚类分析,从特征提取到线性分类器等核心概念,助您奠定模式识别基础。
统计分析
4
2024-05-21
北京邮电大学模式识别课件:模糊模式识别
分享北京邮电大学模式识别课程的课件资料,内容为《模式识别导论》第八章:模糊模式识别。
Matlab
3
2024-05-25
北京大学模式识别课件分享
希望这份资源能对大家有所帮助。内容包括导论、Bayes决策理论、概率密度估计、线性判别函数、神经网络、统计学习理论、SVM、正则化网络等内容。第二章讨论了Bayes决策理论的基本理论和应用,第三章介绍了概率密度估计的参数估计和非参数估计,第四章涉及了线性判别函数及其在SVM中的应用。特征空间的概念和具体应用也在课件中有所提及。
Matlab
0
2024-08-26
星型模式实例:浙江大学大数据讲解案例
星型模式实例:Sales 事实表
事实表: Sales Fact Table
| 列名 | 描述 ||--------------|----------------|| time_key | 时间维度主键 || item_key | 商品维度主键 || branch_key | 分店维度主键 || location_key | 地理位置维度主键 || units_sold | 销售数量 || dollars_sold | 销售额 || avg_sales | 平均销售额 |
维度表:
时间维度表 (Time Dimension)
| 列名 | 描述 ||-----------------|---------------------|| time_key | 时间维度主键 || day_of_the_week | 星期几 || month | 月份 || quarter | 季度 || year | 年份 |
地理位置维度表 (Location Dimension)
| 列名 | 描述 ||------------------|-----------------|| location_key | 地理位置维度主键 || street | 街道 || city | 城市 || state_or_province | 州/省 || country | 国家 |
商品维度表 (Item Dimension)
| 列名 | 描述 ||---------------|-----------------|| item_key | 商品维度主键 || item_name | 商品名称 || brand | 品牌 || type | 类型 || supplier_type | 供应商类型 |
分店维度表 (Branch Dimension)
| 列名 | 描述 ||---------------|-----------------|| branch_key | 分店维度主键 || branch_name | 分店名称 || branch_type | 分店类型 |
Memcached
8
2024-05-12
北京邮电大学模式识别课件分享
模式识别导论第07章句法结构模式识别,包含产生式集合 A→Y1Y2...n Y2...n→Y2Y3...n … Yn-1...n→Yn,,n-1 Yi∈VN若θi ∈ VN,则令Yi=θi;若θi ∈ VT,再引入Yi→θi。
Matlab
0
2024-09-26
北京大学模式识别课程介绍与资源分享
这里分享了北京大学模式识别课程的相关内容,希望能为大家的学习提供帮助。内容包括导论、Bayes决策理论、概率密度估计、线性判别函数、神经网络、统计学习理论、SVM等内容,详细涵盖了课程的核心内容和理论基础。
Matlab
2
2024-07-20
北京邮电大学模式识别课件分享模式识别导论第06章——聚类分析
如图所示,随着初始分类k值的增加,准则函数迅速下降,经过拐点A后下降速度逐渐减缓。拐点A即为最佳初始分类。
Matlab
3
2024-07-15
中南大学软件学院数据挖掘上机作业1的频繁模式挖掘编程任务
中南大学软件学院数据挖掘上机作业1,涉及频繁模式挖掘编程任务。
数据挖掘
2
2024-07-14
二模式识别的发展史_与大家分享北京邮电大学模式识别课件_模式识别导论第01章概论
二、模式识别的发展史
1929年,G. Tauschek发明了阅读机,能够识别0-9的数字。30年代,Fisher提出了统计分类理论,为统计模式识别奠定了基础。因此,在60至70年代,统计模式识别迅速发展。但随着被识别模式的复杂化及特征维度增加,出现了著名的“维数灾难”。不过,随着计算机运算能力的飞速提升,这一问题得到了有效缓解。尽管如此,统计模式识别仍然是目前模式识别领域的主要理论之一。
Matlab
0
2024-11-05