HIS融合方法

当前话题为您枚举了最新的 HIS融合方法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

matlab代码示例图像均方误差的计算及HIS融合方法
在图像融合实验中,选择了HIS融合方法。首先将多光谱图像从原始空间转换到HIS控件,得到强度(I分量)、色调(H分量)和饱和度(S分量)。针对RGB图像,计算出I分量的均值和方差,然后对高分辨率图像进行调整以匹配RGB图像的统计特征。最后将调整后的I分量与原RGB图像的H分量和S分量进行反变换,得到融合后的RGB图像。示例代码如下:见图3,图1和图2为融合前的RGB图像和高分辨率灰度图。
HIS数据字典
本资料为医院业务数据审计资料中的必备参考资料,详细记录HIS系统数据结构。
MATLAB图像融合的实现方法
详细介绍了MATLAB程序实现图像融合的多种方法,内容简洁清晰,易于理解,为读者提供实用帮助。
联众HIS系统表结构详解
详细介绍了联众HIS系统中各功能业务表的结构及字段说明,为研究联众表结构的读者提供便利。
使用PCA实现图像融合的优化方法
PCA (Principal Component Analysis,主成分分析) 是一种广泛应用的数据降维算法,主要用于将 n维特征 转换为更少的 k维特征。在图像融合中,PCA通过提取图像的 主成分,重新构建出 正交的k维特征。这种方法不仅减少了数据冗余,还在保持主要信息的前提下实现了不同图像的 高效融合。整个过程可简化为以下步骤: 特征提取:从输入图像中提取关键特征,构成多维特征空间。 主成分计算:对特征空间进行主成分分析,确定各个主成分的重要性。 重构图像:将主要成分映射回图像空间,生成融合后的图像,突出主要信息并消除冗余。 使用PCA的图像融合不仅能保持图像质量,还能有效减少存储和计算量,广泛应用于多源图像处理和遥感影像融合。
MATLAB代码图像融合中的主成分平均方法
这个文件夹包含了三篇论文的代码:1. Vijayarajan R&Muttan S的《基于离散小波变换的医学图像平均主成分平均融合》,发表于《国际电子和通讯杂志-AEU》;2. Vijayarajan R&Muttan S的《基于模糊C均值聚类的主成分平均融合》,发表于《国际模糊系统杂志》;3. Vijayarajan R和Muttan S的《医学图像融合平均的迭代块级主成分》,发表于《国际光与电子光学杂志》。主文件为main.m,是融合方法的关键代码。数据集来自哈佛医学院的AANLIB,使用了DWT-PCA和基于FCM的平均主成分融合方法。
智能交通系统中的基础信息融合方法
智能交通系统(ITS)中的基础信息融合方法是关键技术之一,通过多种技术和算法对来自不同来源的交通数据进行综合处理,以提高交通信息的准确性。常用的算法包括卡尔曼滤波、人工神经网络和统计分析方法等。卡尔曼滤波用于传感器数据的准确估计和噪声过滤,人工神经网络则能模拟复杂的交通流行为,用于流量和行程时间的预测。统计分析方法如加权平均法和指数平滑法能够通过历史数据和当前观测值进行数据处理和预测。交通流量和行程时间的准确预测对交通管理和优化至关重要。
数据融合MATLAB代码 - MRFN多尺度表示融合网络
此MATLAB代码实现了多尺度表示融合网络(MRFN),用于IEEE信号处理快报上发表的智能故障诊断论文。运行环境为Windows 7和Matlab R2014b。源数据来自凯斯西储大学(CWRU)的机械故障预防技术(MFPT)数据集。我们提供了CWRU数据集的Matlab文件“Sample_multi_array.mat”,您可以从百度Netdisk免费下载。如需使用代码,请参考以下步骤。如果您有任何问题,请联系Hui Yu或作者。
三甲医院管理系统HIS (C#版)性能优势
Smart Client技术融合了胖客户端和瘦客户端应用的优势,满足医院实际使用需求。其自动灵活的升级和更新功能简化了系统维护,并充分利用本地计算资源,将HIS处理负荷合理分配至系统中每台计算机,提升系统响应速度和性能。微软提供的Microsoft Application Block为开发具备智能更新功能的.NET应用提供了便利。HIS Demo中重用并扩展了Updater Application Block (UAB)等应用模块,实现了符合HIS应用实际需求的自动更新功能。
数据融合 Matlab 代码
此代码库实现了一种方法,该方法可通过多分支 CNN 识别复制移动的源和目标区域。该方法利用插值伪影和边界不一致性的特征。