智能交通系统(ITS)中的基础信息融合方法是关键技术之一,通过多种技术和算法对来自不同来源的交通数据进行综合处理,以提高交通信息的准确性。常用的算法包括卡尔曼滤波、人工神经网络和统计分析方法等。卡尔曼滤波用于传感器数据的准确估计和噪声过滤,人工神经网络则能模拟复杂的交通流行为,用于流量和行程时间的预测。统计分析方法如加权平均法和指数平滑法能够通过历史数据和当前观测值进行数据处理和预测。交通流量和行程时间的准确预测对交通管理和优化至关重要。