熵子图

当前话题为您枚举了最新的熵子图。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

基于分层熵子图的聚类算法:LEGClust
J.M. Santos 等人提出的 LEGClust 算法是一种基于分层熵子图的聚类算法,该算法已发表在 IEEE TPAMI(第 30 卷,第 1 期,2008 年,1-13 页)。MATLAB 代码可用于实现该算法。
绘制二进制熵与三进制熵函数图
本节将绘制二进制熵函数曲线,并且包含三进制的熵函数图示。二进制熵函数定义为H(p) = -plog2(p) - (1-p)log2(1-p),而三进制熵函数则为H(p) = -p1log3(p1) - p2log3(p2) - p3*log3(p3)。接下来,我们使用Matlab进行实现。 % 二进制熵函数 p = 0:0.01:1; H_bin = -p.*log2(p) - (1-p).*log2(1-p); H_bin(p==0) = 0; H_bin(p==1) = 0; % 避免计算log(0) % 三进制熵函数 p1 = 0:0.01:1; p2 = 1 - p1; p3 = 0.5; H_tri = -p1.*log3(p1) - p2.*log3(p2) - p3.*log3(p3); H_tri(p1==0 | p2==0) = 0; % 避免计算log(0) % 绘图 figure; subplot(2,1,1); plot(p, H_bin); title('二进制熵函数'); xlabel('p'); ylabel('H(p)'); subplot(2,1,2); plot(p1, H_tri); title('三进制熵函数'); xlabel('p1'); ylabel('H(p1,p2,p3);'); 图中分别展示了二进制熵和三进制熵的变化情况,直观地反映了熵的性质。
Matlab 子图句柄简化初始化
该项目提供了一种简化 subplot 函数初始化的方法,仅需指定行数、列数或索引即可创建子图。
基于加权不确定图数据的高效紧密子图挖掘算法
研究不确定图数据中的紧密子图挖掘问题,利用加权不确定图模型,以子图期望密度和顶点期望度数度量紧密程度。算法基于贪心迭代,优化执行过程,保证结果达到2近似比,并且确保高效率和正确性。研究还证明了带顶点限制的紧密子图挖掘问题的NP难度,该算法相比其他方法更快速高效。
图与子图-数据分析算法相关联研究
图与子图的研究在数据分析算法中具有重要意义,探讨它们之间的关联对于提升算法效率至关重要。
matlab开发-spidentify的图H子批次识别
matlab开发-spidentify。识别图H中的子批次
通过调整子图比例提升图形外观-matlab开发
这个函数接受带有子图的图形作为输入,并通过统一设置子图比例以及删除多余轴标签来改善图形外观。例如,用户可以指定自定义的x轴和y轴限制值,或者让代码自动处理它们。
视网膜厚度图和子域数量分析工具:retinaMaps
retinaMaps 算法使用分割数据描述视网膜色素上皮 (RPE) 和布鲁赫膜 (BM) 之间的空间。它提供 ETDRS 子域对应的面积和体积值。使用 retinaMaps 前,需要先执行 segPLEX(https://github.com/cnzakimuena/segPLEX)。处理后的文件夹(如 SamplePatient_01、SamplePatient_02 等)应包含一个“结果”子文件夹,将其放入“已处理”文件夹中,该文件夹应位于当前目录内。
基于Spark的系统信息熵和条件熵计算
利用Spark计算CMIM、MRMR、MIFS等方法的开源库已经相当成熟。作者在仿照Spark MLlib库的特征选择功能基础上,扩展了支持系统信息熵和条件熵计算的方法。需要具体结果时,可直接调用ml.feature中相应的方法。
管理员子图-车站售票管理系统的优化与实现
管理子图设计了一个先进的车站售票管理系统,提高客户服务效率和用户体验。该系统整合了最新的技术和用户界面设计,确保了操作的便捷性和信息安全性。通过优化,系统能够更高效地处理票务信息和客户需求,为车站管理带来了显著的改进和现代化。