learning analytics

当前话题为您枚举了最新的 learning analytics。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Research and Application of MOOC Platform Learning Analytics Algorithm Based on Big Data
Big data technology has become a hot research topic in the field of education, focusing on analyzing large amounts of educational data collected to improve teaching methods and enhance education quality. Among educational big data, learning analytics is particularly important, as it helps teachers understand students' learning progress and implement personalized teaching, thus promoting teaching reform. In higher education, the application of big data-based learning analytics technology can monitor students' learning processes. By analyzing students' behavioral patterns during the learning process, teachers can gain a more intuitive understanding of each student's performance. This technology provides a series of insights such as 'who is learning', 'what is being learned', and 'how well students are learning', which is crucial for ensuring educational quality. Data collection is the first step in big data learning analytics, which involves utilizing various technical means to gather data from different sources. In the context of online education, the primary source of data is students' online behavior during the learning process. This data includes but is not limited to, video viewing patterns, discussion board participation scores, assignment scores, exam results, and forum interaction scores. These data need to be collected using appropriate tools such as web crawlers written in Python or by calling data through API interfaces. Once the data is collected, the next step is data preprocessing. This stage involves cleaning the data, removing unreliable data points like test accounts and extreme outliers. The goal of preprocessing is to ensure the accuracy of subsequent analysis, structure the data for easy storage, and prepare it for analysis. Data analysis is the core part of learning analytics and primarily includes statistical analysis and visualization, clustering analysis, predictive analytics, association rule mining, and text mining. These methods help teachers gain deeper insights into students' behavioral patterns, learning habits, and performance trends. Statistical analysis and visualization transform data into charts and graphs for intuitive representation of students' learning progress. Clustering analysis groups students by learning habits or grades, while predictive analytics forecasts students' future performance based on historical data. Association rule mining focuses on identifying relationships between students' behaviors, and text mining analyzes content from discussion boards to understand students' learning attitudes and thought processes. The application and development of big data in education holds great potential. With the rapid growth of global data, educational big data is gradually becoming a field of focus both domestically and internationally, offering significant value in education. In practical projects, the application of learning analytics has already shown results. For example, a research project mentioned in the article uses the 'C Programming 1' course on a MOOC platform to analyze students' learning behavior data combined with performance data to help teachers better understand students' progress and offer reasonable teaching suggestions. The application of big data in education, particularly in learning analytics on MOOC platforms, is becoming a key driver of educational reform.
集合操作-Big Data Analytics with Spark
UNION: 并集,查询所有内容,重复的记录去除。示例:SELECT * FROM emp UNION SELECT * FROM emp20; UNION ALL: 并集,查询所有内容,包括重复记录。示例:SELECT * FROM emp UNION ALL SELECT * FROM emp20; INTERSECT: 交集,仅显示两个表中的重复记录。示例:SELECT * FROM emp INTERSECT SELECT * FROM emp20; MINUS: 差集,仅显示一个表中有而另一个表中没有的记录。示例:SELECT * FROM emp MINUS SELECT * FROM emp20;
Accelerating Real-Time Analytics with Spark and FPGAaaS
使用 Spark Streaming 进行实时分析 在当今数据驱动的世界里,实时数据分析变得至关重要。P.K. Gupta 和 Megh Computing 在 #HWCSAIS17 中提出了一种利用 Spark Streaming 结合 FPGA as a Service (FPGAaaS) 的技术来加速实时分析的方法。 Spark Streaming 用于实时分析 Spark Streaming 是 Apache Spark 的一个重要模块,它提供了对实时流数据处理的支持。通过微批处理的方式,Spark Streaming 能够高效地处理大量的流数据,并且能够与 Spark 的核心功能(如 SQL、MLlib 等)无缝集成。这使得 Spark Streaming 成为处理实时数据流的理想选择。- ETL (Extract, Transform, Load):Spark Streaming 支持从多种来源提取数据,进行转换处理后加载到不同的存储系统中。- 数据处理:包括清洗、聚合、过滤等操作,这些操作可以利用 Spark 的强大计算能力快速完成。- 机器学习 (ML) 和深度学习 (DL):Spark 的 MLlib 库提供了丰富的机器学习算法,而深度学习则可以通过第三方库如 Deeplearning4j 或 TensorFlow on Spark 实现。 为什么使用 FPGA:低延迟和高吞吐量 现场可编程门阵列 (FPGA) 是一种可编程集成电路,其特点是可以根据特定的应用需求进行定制化设计。FPGA 在处理高速数据流时表现出色,特别是在需要低延迟和高吞吐量的场景下。- 内联处理:FPGA 可以直接对接网络接口卡 (NIC),实现数据的内联处理。这种架构可以显著减少数据传输延迟,并提高处理效率。- 卸载处理:将一些计算密集型任务卸载到 FPGA 上执行,从而减轻 CPU 的负担并提升整体系统的性能。 使用 FPGA 加速器面临的挑战 尽管 FPGA 提供了诸多优势,但在实际应用中也会遇到一些挑战:- 开发难度:相比于传统的软件开发,FPGA 的开发过程更为复杂,需要专门的知识和工具支持。- 调试困难:FPGA 中的错误定位和调试比传统软件更加困难。- 资源限制:FPGA 资源有限,需要合理规划资源分配以避免瓶颈。 Megh 平台 Megh Computing 提出了相关解决方案。
Deep Learning Trends and Fundamentals
深度学习历史趋势 一、深度学习历史趋势 神经网络的众多名称和命运变迁: 早期发展:20世纪50年代末至60年代初,神经网络研究开始兴起,受到广泛关注。 第一次寒冬:1970年代,由于理论和技术上的限制,神经网络研究进入低谷期。 反向传播算法的引入:1980年代中期,反向传播算法的提出极大地推动了神经网络的研究和发展。 第二次寒冬:1990年代中期,尽管有了突破性的进展,但由于计算资源和数据量的限制,神经网络再次遭遇挫折。 深度学习的复兴:21世纪初至今,随着GPU技术的发展、大数据时代的到来以及算法的不断创新,深度学习迎来了爆发式的增长。 与日俱增的数据量: 互联网时代:随着互联网的普及,数据生成的速度大大加快。 社交媒体:社交媒体平台成为海量数据的重要来源之一。 物联网:各种传感器设备不断收集环境数据,进一步丰富了数据资源。 大数据技术:Hadoop等大数据处理框架为存储和处理大规模数据提供了技术支持。 与日俱增的模型规模: 参数数量增加:随着模型复杂度的提升,模型中的参数数量也在不断增加。 深层架构:从最初的几层到现在的上百层甚至更多,神经网络的层数不断增加。 并行计算:GPU等硬件技术的进步使得大型模型的训练成为可能。 与日俱增的精度、复杂度和对现实世界的冲击: 精度提升:随着模型的改进,识别和预测的准确率不断提高。 应用场景扩展:从图像识别到自然语言处理,再到推荐系统等领域,深度学习的应用范围越来越广泛。 社会经济影响:人工智能技术的发展对各行各业产生了深远的影响,促进了产业升级和社会变革。 二、应用数学与机器学习基础 线性代数: 标量、向量、矩阵和张量:介绍了这些基本概念及其在深度学习中的应用。 矩阵和向量相乘:讲解了如何进行矩阵和向量之间的乘法操作。 单位矩阵和逆矩阵:单位矩阵是重要的特殊矩阵,逆矩阵对于解决线性方程组等问题至关重要。 线性相关和生成子空间:线性相关的概念有助于理解数据的空间表示。 范数:范数可以用来衡量向量或矩阵的大小和特性。
mysql_learning_resources
MySQL必知必会的资源,适合MySQL学习。
Simple Oracle Learning Resources
Oracle学习资料,我学Oracle的时候记下来的,只有一部分!呵呵!仅供参考,大家一起进步
UCLA Extension Predictive Analytics课程的最终项目
作为数据科学认证的一部分,我完成了UCLA Extension Predictive Analytics课程的最终项目。在这个项目中,我使用了Tableau创建了视觉化效果,并使用R进行了统计分析。分析的数据集来自于葡萄牙实时议会选举结果,每10分钟收集一次数据,涵盖了各个区域和政党的投票情况,包括总选票、空白票和废票的数目和百分比。我还探索了机器学习模型在预测选民投票率方面的潜力。这些数据来自于UC Irvine机器学习存储库。更多信息可以在其网站上找到。
MATLAB导入Excel代码-Reliability_Data_Analytics
MATLAB导入Excel代码可靠性分析 这是MATLAB代码的集合,系统地将基于csv的事件日志导入标准格式分析基准指标,以纵向跟踪在役舰队的绩效。根据时间段和感兴趣的系统选择,导出为用户友好的Excel格式。
Bi-LSTM MATLAB Code and Data Science Notes Deep Learning,Machine Learning,and More
Bi-LSTM MATLAB Code – DataScience-Notes 数据科学笔记。提供有关数据科学的笔记、代码和实例,涵盖数学、统计、机器学习、深度学习等基础知识及相关应用场景。参考资料已在最后列出。大部分代码采用Python编写,涉及的库及框架包括: NumPy、SymPy、Scikit-learn、Gensim、TensorFlow 1.X、TensorFlow 2.X 和 MXNet。部分数值分析代码则使用MATLAB编写。 注释:- (notebook): Jupyter Notebook 文件链接- (MATLAB): 相应的 MATLAB 代码链接- (md): Markdown 文件链接- (link): 外部链接 目录1. Prerequisite Knowledge (必备知识)- 1.1 Basic Concepts Related to Mathematics and Python Implementation (数学相关基础概念和Python实现)- Vector and Determinant (向量和行列式)- Matrix (矩阵及其运算)
Four Essential Books for Learning MATLAB
本压缩包中包括四本MATLAB学习书籍:1. Matlab_数学手册2. MATLAB R2016完全一本通3. MATLAB编程4. MATLAB基础及其应用教程