基于密度树

当前话题为您枚举了最新的基于密度树。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

基于密度树的网格快速聚类算法
该算法将网格原理应用于基于密度树的聚类算法,提高效率,降低I/O开销。
基于局部密度峰值的最小生成树聚类算法
该项目包含使用Matlab实现的基于局部密度峰值的最小生成树(MST)聚类算法(LDP-MST)代码。 文件说明: LDPMST_OPT.m: 实现LDP-MST算法(对应论文中的算法3)。 LDP_Searching.m: 包含算法1和算法2的实现。 LMSTCLU_OPT.m: 基于MST的聚类算法对局部簇进行聚类,并计算密度峰值。 drawcluster2: 用于可视化聚类结果。 综合数据集pacake: 包含实验中使用的综合数据集。
基于快速查找和密度峰值的峰值密度聚类matlab代码
这个资源库包含了我对《基于自适应密度的无监督高光谱遥感图像聚类》论文的实现,该论文参考自2014年的《Clustering by fast search and find of density peaks》。我在MATLAB中进行了大量修改,以优化参数设置和算法框架。
基于神经信号的功率谱密度估计
介绍了一种基于神经信号进行功率谱密度估计的方法。该方法接收神经信号向量作为输入,并输出相应的功率谱密度值,为神经信号分析提供了有效的频域特征。
基于Parzen窗的概率密度估计方法
在此研究中,我们使用高斯窗和方窗两种方法,对给定的男女生身高体重分布进行概率密度估计。同时,我们设计了基于贝叶斯最小错误率的分类器,用于有效地对测试样本进行性别分类。
基于神经网络的经验大气密度模型校准
准确预测近地轨道航天器所受阻力,大气密度建模至关重要。经验模型虽能提供相对精确的密度估计,但仍存在误差。本研究提出一种基于神经网络的校准方法,降低经验模型预测航天器轨道密度误差。该方法以三种最新经验大气模型(DTM-2013、NRLMSISE-00 和 JB2008)的密度估计为输入,并利用 CHAMP 和 GRACE 任务加速度计数据推算的密度进行训练、验证和测试。
基于树的公共子树查找算法综述
回顾了在有根、带标记和有序树中基于两棵树的公共子树查找算法及其历史背景。文章将公共子树查找问题分为三大类,并详细探讨了每类算法的代表性方法。特别地,结合数据挖掘领域的枚举树技术,提出了一种新的公共子树查找算法思路。最后,文章比较了各算法的效率,并深入分析了公共子树研究的现状和未来发展方向。
基于邻域系统密度差异的高效离群点检测算法
在离群点检测领域,传统LOF算法在高维离散数据检测中精度较低,且参数敏感性较高。为了解决这一问题,提出了NSD算法(Neighborhood System Density Difference)。该算法基于密度差异度量的邻域系统方法,具有较高的检测精度和低参数敏感性。NSD算法的核心步骤如下: 截取距离邻域计算:首先计算数据集中对象在截取距离内的邻居点个数。 邻域系统密度计算:其次,计算对象的邻域系统密度,从而确定对象与邻域数据间的密度差异。 密度差异比较:通过比较对象密度和邻居密度,评估对象与邻域数据趋向于同一簇的程度,判断离群点的可能性。 输出离群点:最终识别出最可能是离群点的对象。 通过实验对比,NSD算法在真实数据集和合成数据集上表现出优越的性能,具有更高的检测准确率、更高的执行效率以及更低的参数敏感性,相比LOF、LDOF和CBOF算法,展示了良好的应用前景。
基于R树的空间方向关系高效查询
方向关系揭示了空间对象之间的顺序关系,在空间数据挖掘和地理信息系统等领域中扮演着重要角色。方向关系查询的核心在于方向连接操作。然而,现有的空间连接研究主要集中在拓扑和距离关系上,对方向关系的关注相对较少。 本研究深入探讨了基于R树的方向关系查询处理方法。通过定义四元组模型来表示对象最小边界矩形 (MBR) 之间的方向关系,并提出了基于R树的过滤步骤来处理方向关系查询。此外,还将提炼步骤细化为三种不同的操作,以实现高效处理任意对象间方向关系查询的目标。 针对空间数据挖掘中方向关系查询通常需要满足特定距离约束的特点,本研究进一步提出了一种同时利用方向和距离约束来限制R树搜索空间的查询处理算法。实验结果表明,与不使用R树的查询处理方法相比,该方法在 I/O 开销和 CPU 开销方面均表现出显著的性能优势。
基于规则精度的决策树剪枝策略
规则2和规则4展现出100%的精度,表明它们在训练数据上具有极高的准确性。然而,在决策树算法中,追求过高的训练精度可能导致过拟合现象,即模型对训练数据过度适应,而对未知数据的预测能力下降。为了解决这个问题,后剪枝法是一种有效的策略。 以规则修剪为例,我们可以分析不同剪枝策略对模型性能的影响。下表列出了不同剪枝方案的精度变化: | 剪枝方案 | 分类正确的数目 | 分类错误的数目 | 精度 ||---|---|---|---|| 去掉A | 5 | 3 | 5/8 || 去掉B | 3 | 4 | 3/7 || 去掉C | 3 | 2 | 3/5 || 去掉AB | 4 | 0 | 4/4 || 去掉BC | 3 | 0 | 3/3 || 去掉AC | 4 | 1 | 4/5 | 通过比较不同方案的精度,可以选择最优的剪枝策略,例如,去掉AB或BC都使得规则的精度达到了100%。