Apache Tez 为大数据处理提供 DAG 作业支持,提升数据处理速度。面向开发者,优化应用程序性能与扩展性。Tez 助力 Hadoop 应对实时查询和机器学习等场景。
Tez 计算框架
相关推荐
Apache Tez提升DAG作业性能的开源计算框架
Tez是Apache最新的支持DAG作业的开源计算框架,它可以将多个有依赖的作业转换为一个作业,从而大幅提升DAG作业的性能。Tez并不直接面向最终用户——事实上,它允许开发者为最终用户构建性能更快、扩展性更好的应用程序。Hadoop传统上是一个大量数据批处理平台,但是,许多用例需要近乎实时的查询处理性能。还有一些工作不适合MapReduce,例如机器学习。Tez的目的就是帮助Hadoop处理这些用例场景。
Hadoop
0
2024-10-31
Storm 流式计算框架
Storm 是一种分布式、高容错的实时计算系统,适用于处理快速生成的海量数据流。其核心优势在于低延迟、高吞吐量以及易于扩展,广泛应用于实时数据分析、机器学习、风险控制等领域。
Storm
2
2024-06-07
Apache Tez 0.8.3 源码解读
Apache Tez 是一个构建于 YARN 之上的开源计算框架,支持 DAG 作业。Tez 源于 MapReduce 框架,但其核心思想是将 Map 和 Reduce 操作进一步拆分为更细粒度的元操作,例如 Input、Processor、Sort、Merge 和 Output。这些元操作可以自由组合,形成新的操作,并通过控制程序组装成复杂的 DAG 作业。 Tez 的主要特点包括:- 作为 Apache 二级开源项目,其源代码已正式发布。- 运行于 YARN 之上,可有效利用集群资源。- 适用于 DAG(有向图)应用,可替代 Hive/Pig 等传统数据处理工具,类似于 Impala、Dremel 和 Drill。
Hive
4
2024-05-12
CDH6.3.2 Tez集成
CDH6.3.2版本中集成了Tez框架。
Hive
4
2024-05-13
Hive LLAP 与 Apache Tez
Apache Tez 是一个轻量级并行框架,它专为 Apache Hadoop 而设计,它提供了高性能、可伸缩性和低延迟。
Hive LLAP 是一种轻量级事务处理引擎,它允许您在 Hive 中快速有效地执行查询。它利用 Apache Tez 的并行处理能力,可以显著提高 Hive 查询的性能。
将 Hive LLAP 与 Apache Tez 结合使用可以帮助您提高数据仓库和分析应用程序的性能。
Hive
4
2024-05-13
Spark分布式计算框架
Spark是一种高效的开源集群计算系统,专为大规模数据处理而设计。它提供了一个快速灵活的引擎,用于处理批处理、交互式查询、机器学习和流式计算等多种工作负载。
Spark核心特性:
速度: Spark基于内存计算模型,相比传统的基于磁盘的计算引擎(如Hadoop MapReduce),速度提升可达100倍。
易用性: Spark提供简洁易用的API,支持多种编程语言,包括Scala、Java、Python和R。
通用性: Spark支持批处理、交互式查询、机器学习和流式计算等多种工作负载,提供了一个统一的平台来处理各种大数据需求。
可扩展性: Spark可以在数千个节点的集群上运行,能够处理PB级别的数据。
Spark生态系统:
Spark拥有丰富的生态系统,包括用于SQL处理的Spark SQL、用于机器学习的MLlib、用于图计算的GraphX以及用于流式计算的Spark Streaming。
Spark应用场景:
Spark广泛应用于各个领域,包括:
数据分析和商业智能
机器学习和人工智能
实时数据处理和流式计算
图计算和社交网络分析
学习Spark的优势:
学习Spark可以帮助您:
掌握大数据处理的核心技术
提升数据分析和处理能力
开拓职业发展空间,进入高薪行业
spark
3
2024-06-22
计算平面框架内力的方法
这段代码适用于在MATLAB中计算平面框架的内力,支持均布荷载和集中荷载的加载。
Matlab
0
2024-08-05
Spark 分布式计算框架指南
本指南涵盖 Apache Spark 核心模块、SQL 处理、流式计算、图计算以及性能调优与内核解析等方面。内容面向希望学习和应用 Spark 进行大数据处理的用户,提供从入门到实战的全面指导。
主要内容包括:
Spark 核心概念与编程模型: 介绍 Spark 的基本架构、RDD、算子以及常用 API。
Spark SQL 数据处理: 讲解 Spark SQL 的数据抽象、查询优化以及与 Hive 的集成。
Spark Streaming 实时流处理: 探讨 Spark Streaming 的架构、DStream API 以及状态管理。
Spark GraphX 图计算: 介绍 Spark GraphX 的图抽象、算法实现以及应用场景。
Spark 性能调优: 分析 Spark 性能瓶颈、参数配置以及优化技巧。
Spark 内核解析: 深入剖析 Spark 的内部机制、任务调度以及内存管理。
通过学习本指南,读者能够掌握 Spark 的核心技术和应用方法,并能够将其应用于实际的大数据处理场景。
spark
2
2024-05-29
Fourinone 分布式计算框架解析
Fourinone 是一款基于 Java 的开源分布式计算框架,简化分布式环境下的应用程序开发。其核心原理在于将计算任务分解成多个子任务,并将其分配到集群中的不同节点上并行执行,最终将计算结果汇总以获得最终结果。
Fourinone 的架构主要包含以下几个关键组件:
Worker: 负责执行具体的计算任务,多个 Worker 可以并行工作以提高计算效率。
ParkServer: 负责管理 Worker 节点,接收来自 Client 的任务请求,并将任务分配给空闲的 Worker 执行。
Client: 用户提交任务的客户端,负责将任务发送到 ParkServer,并接收计算结果。
Fourinone 通过高效的任务调度和数据传输机制,实现了高性能的分布式计算。其简单易用的 API 也降低了分布式应用程序的开发门槛,适用于各种数据密集型计算场景。
算法与数据结构
3
2024-05-30