深入解析 Hadoop YARN 的工作原理,涵盖其资源调度机制,揭示其核心原理。
Hadoop YARN 框架及其资源调度机制
相关推荐
深入学习Yarn资源管理与作业调度机制
YARN是Hadoop 2.0中引入的一个子项目,它对Hadoop集群管理系统进行了重大的架构改进,解决了Hadoop 1.0中的一些关键问题,尤其是在扩展性和资源管理方面。YARN的主要功能是资源管理和作业调度/监视,它允许不同的数据处理框架共享同一个Hadoop集群资源。
YARN的核心组件包括:1. 资源管理器(ResourceManager,RM):负责整个集群的资源调度和任务分配,是YARN的主要协调者。2. 节点管理器(NodeManager,NM):运行在集群中的每个节点上,负责监视和管理该节点上的资源(如内存、CPU、磁盘、网络),并处理来自资源管理器的命令。3. 应用程序历史服务器(Application History Server,AHS):用于存储应用程序运行历史信息,以便事后分析和故障排查。
在应用程序的运行机制中,客户端首先提交应用程序给资源管理器,后者会启动一个应用主(ApplicationMaster)来负责该应用程序的生命周期管理。应用主与资源管理器通信,申请运行所需的资源容器。一旦获取资源,应用主会在容器上启动任务,并在任务执行完毕后清理资源。
YARN支持灵活的资源请求,客户端可以根据应用程序的需要指定内存和CPU资源,甚至指定容器的本地性要求,如优先在存储HDFS数据块副本的节点上运行,或者在特定机架上运行。这些功能大大提高了数据处理的效率。
YARN的另一个亮点是对应用程序生命周期的管理,从短暂的几秒钟到长时间运行的作业,如实时数据处理或长时间批处理作业,都能得到有效管理。应用主在运行过程中可以根据需要动态申请或释放资源,这为YARN带来了更高的灵活性和资源利用率。
与传统的MapReduce框架相比,YARN在资源管理方面做出了革命性改变。在MapReduce 1.0中,作业跟踪器(JobTracker)承担了资源调度和任务监控的双重角色,随着集群规模的扩大,JobTracker成为了瓶颈,限制了系统的可扩展性。而在YARN中,资源调度和任务监控的功能被分离,前者由资源管理器负责,后者由应用主负责,使得YARN可以支持更多种类的处理框架,如Spark、Tez、Hive等。
Hadoop
0
2024-11-06
深入解析Hadoop任务调度机制
掌控Hadoop任务调度
核心概念
Hadoop任务调度的基本原理和运作方式
Hadoop任务的调度流程解析
内置调度器
Hadoop自带调度器的种类及特点
不同调度器之间的比较和选择
自定义调度器
如何根据需求编写个性化Hadoop调度器
自定义调度器的应用场景
总结
Hadoop任务调度机制的重要性
优化调度策略提升集群效率
Hadoop
6
2024-04-30
Yarn 资源分配与管理机制解析
Yarn 的内存分配与管理涉及 ResourceManage、ApplicationMaster 和 NodeManager 三个核心组件,优化策略也围绕着这些组件展开。Container 作为运行 MapReduce 任务的容器,在 Yarn 的资源管理中扮演着重要角色,其内部机制值得深入探究。
Hadoop
4
2024-05-16
深入解析YARN工作机制
YARN(Yet Another Resource Negotiator)是Hadoop 2.0中重要的资源管理系统,YARN的工作机制在于将资源管理与任务调度分离,使得Hadoop的计算框架能够支持不同的应用程序。YARN的架构主要由ResourceManager、NodeManager、ApplicationMaster和Container组成。
ResourceManager:负责整个集群的资源管理与分配,它接受应用程序提交的资源请求并进行资源的协调和分配。ResourceManager中有两个关键组件:- Scheduler:仅负责资源分配,而不负责监控应用程序的状态和进程。- ApplicationManager:负责应用程序的启动和生命周期管理。
NodeManager:NodeManager是每个节点上运行的代理程序,负责管理单个节点的资源,并监控每个Container的资源使用情况。它定期向ResourceManager发送心跳报告。
ApplicationMaster:每个应用程序会拥有一个ApplicationMaster,它负责管理该应用程序的生命周期,分配资源并与NodeManager协调任务的执行。
Container:Container是YARN中的最小资源分配单位,YARN的工作机制中,任务被打包成多个Container,由NodeManager分配至集群中的各节点并执行。
YARN的工作机制流程:1. 用户向ResourceManager提交应用。2. ResourceManager分配一个Container用于启动ApplicationMaster。3. ApplicationMaster向ResourceManager申请任务所需资源。4. ResourceManager将资源分配给ApplicationMaster。5. ApplicationMaster协调NodeManager在Container中执行任务。6. NodeManager监控Container的资源使用情况,保证任务顺利执行。
Hadoop
0
2024-10-28
YARN框架详细代码分析
详细解析了YARN框架,对其实现代码进行了深入分析。
Hadoop
2
2024-07-17
Hadoop YARN 架构解析
深入解析 Hadoop YARN 架构设计与实现原理。
Hadoop
4
2024-05-13
Hadoop YARN权威指南
Hadoop YARN权威指南
本书由默西 (Arun C. Murthy) 撰写,机械工业出版社于2015年3月出版。这本书深入浅出地讲解了Hadoop YARN的核心概念、架构和应用。
本书共242页,内容涵盖YARN的基础知识、资源管理、应用程序生命周期管理等方面,并结合实际案例进行讲解,帮助读者更好地理解和应用YARN。
Hadoop
2
2024-05-23
Yarn 及 Hadoop 优化
Yarn 及 Hadoop 优化
Hadoop
3
2024-05-25
YARN详解定义、功能、组件及调度程序
YARN,全称为Yet Another Resource Negotiator,是Apache Hadoop的资源管理器。它负责集群资源的管理与调度,支持多种应用程序同时运行,包括MapReduce、Spark等。YARN的核心组件包括资源管理器和应用程序管理器,通过节点管理器实现资源的监控与分配。其调度程序支持多级调度,优化集群资源的利用效率,使得大数据处理更为高效。
Hadoop
3
2024-07-16