YARN,全称为Yet Another Resource Negotiator,是Apache Hadoop的资源管理器。它负责集群资源的管理与调度,支持多种应用程序同时运行,包括MapReduce、Spark等。YARN的核心组件包括资源管理器和应用程序管理器,通过节点管理器实现资源的监控与分配。其调度程序支持多级调度,优化集群资源的利用效率,使得大数据处理更为高效。
YARN详解定义、功能、组件及调度程序
相关推荐
Hadoop YARN 框架及其资源调度机制
深入解析 Hadoop YARN 的工作原理,涵盖其资源调度机制,揭示其核心原理。
Hadoop
2
2024-05-16
YARN高优先级作业调度优化方案
YARN(Yet Another Resource Negotiator)是Apache Hadoop项目的一个子项目,提高大数据框架中的资源分配和作业调度效率。YARN的核心组件包括资源管理器、节点管理器和应用程序历史服务器,负责资源和作业管理。当前的YARN调度机制通常按提交顺序分配资源,未能有效区分作业的紧急度,这在需要快速响应的场景中显得不足。
为此,提出了一种基于YARN的高优先级作业调度方案,通过修改原有调度策略,引入一个自定义的高优先级队列,使高优先级作业能优先获得资源。这种机制在资源有限的情况下确保高优先级作业的快速执行。
在新方案中,作业的资源分配不再单纯依据提交顺序,而是按照优先级进行,从而显著提升高优先级作业的执行效率,减少低优先级作业的干扰。实验结果显示,高优先级作业的执行效率显著提高,验证了该方案的有效性。
Hadoop
0
2024-10-31
Yarn 及 Hadoop 优化
Yarn 及 Hadoop 优化
Hadoop
3
2024-05-25
数据仓库功能性定义及概述
数据仓库是企业信息环境的关键组成部分,其功能包括:提供企业综合、完整的总体概述;便捷获取当前和历史数据以支持决策者需求;无干扰地运作并支持决策处理;确保企业信息的一致性;提供灵活互动的战略信息来源。
SQLServer
1
2024-07-31
深入学习Yarn资源管理与作业调度机制
YARN是Hadoop 2.0中引入的一个子项目,它对Hadoop集群管理系统进行了重大的架构改进,解决了Hadoop 1.0中的一些关键问题,尤其是在扩展性和资源管理方面。YARN的主要功能是资源管理和作业调度/监视,它允许不同的数据处理框架共享同一个Hadoop集群资源。
YARN的核心组件包括:1. 资源管理器(ResourceManager,RM):负责整个集群的资源调度和任务分配,是YARN的主要协调者。2. 节点管理器(NodeManager,NM):运行在集群中的每个节点上,负责监视和管理该节点上的资源(如内存、CPU、磁盘、网络),并处理来自资源管理器的命令。3. 应用程序历史服务器(Application History Server,AHS):用于存储应用程序运行历史信息,以便事后分析和故障排查。
在应用程序的运行机制中,客户端首先提交应用程序给资源管理器,后者会启动一个应用主(ApplicationMaster)来负责该应用程序的生命周期管理。应用主与资源管理器通信,申请运行所需的资源容器。一旦获取资源,应用主会在容器上启动任务,并在任务执行完毕后清理资源。
YARN支持灵活的资源请求,客户端可以根据应用程序的需要指定内存和CPU资源,甚至指定容器的本地性要求,如优先在存储HDFS数据块副本的节点上运行,或者在特定机架上运行。这些功能大大提高了数据处理的效率。
YARN的另一个亮点是对应用程序生命周期的管理,从短暂的几秒钟到长时间运行的作业,如实时数据处理或长时间批处理作业,都能得到有效管理。应用主在运行过程中可以根据需要动态申请或释放资源,这为YARN带来了更高的灵活性和资源利用率。
与传统的MapReduce框架相比,YARN在资源管理方面做出了革命性改变。在MapReduce 1.0中,作业跟踪器(JobTracker)承担了资源调度和任务监控的双重角色,随着集群规模的扩大,JobTracker成为了瓶颈,限制了系统的可扩展性。而在YARN中,资源调度和任务监控的功能被分离,前者由资源管理器负责,后者由应用主负责,使得YARN可以支持更多种类的处理框架,如Spark、Tez、Hive等。
Hadoop
0
2024-11-06
YARN 应用程序开发指南
YARN 应用程序开发指南详细介绍了如何利用YARN框架进行应用程序开发,涵盖了配置、调优和实际部署等关键步骤。本指南帮助开发者深入了解YARN的工作原理和最佳实践,从而有效地利用集群资源。
Hadoop
2
2024-07-16
MySQL安装程序组件
这是 MySQL 5.6.10.1 社区版安装程序的第五部分。
MySQL
4
2024-05-19
类别 t 组件名称 t 功能
清洗类- 数据类型检查- 外键约束- 主键约束- 缺值处理- 空值域约束- 去重
转换类- Casewhent- 计数区间化- 字段类型转换- 数值区间化- 归一化- 属性交换- 关联规则数据生成- PCA 主成分分析
集成类- Delete 组件- Join 组件- Sort 组件- Where 组件
计算类- 计算生成列- Groupby 组件- 统计
抽样类- 分层抽样- 采样
集合类- 集合差- 集合交并
更新类- Update 组件- Insertupdate 组件
其他类- 数据集分割
数据挖掘
2
2024-05-26
ETL-Kettle 实用案例及Kettle组件详解
ETL-Kettle(水壶样品)是围绕Kettle常见组件的实用案例,涵盖了95%的功能。案例包含50个ktr和kjb文件,兼容Kettle 8.2及9.0版本。适合数据分析人员、数据库工程师和对数据挖掘感兴趣的人士快速掌握Kettle及ETL过程。详细目录包括KettleTrans脚本、kettlexp.sql数据库脚本、多种数据输入格式(如txt、CSV、gz、xls)、作业依赖的数据源及多个输出文件夹。
数据挖掘
1
2024-08-01