Design an M-order adaptive echo canceller, with u(n) as the system input and d(n) as the desired response. The signal d(n) contains the echo of u(n). The system operates with an 8kHz sampling rate, and the echo canceller should be able to eliminate the echo within 16ms.
Design M-order Adaptive Echo Canceller
相关推荐
Adaptive Server Anywhere 6.0 体验
功能齐全,操作便捷
Sybase
3
2024-05-13
Sybase Adaptive Server Anywhere 6.0
Sybase Adaptive Server Anywhere 6.0 兼容 Windows 7,可运行在兼容模式下。
Sybase
6
2024-04-30
RLS Adaptive Filter Implementation in MATLAB
This is the code for implementing the RLS adaptive algorithm filter. The RLS (Recursive Least Squares) algorithm is widely used in adaptive filtering applications. Below is the MATLAB implementation of the RLS adaptive filter which helps in understanding the core concepts of adaptive filtering and recursive algorithms.
% MATLAB code for RLS adaptive filter
N = 1000; % Number of filter coefficients
M = 32; % Filter order
lambda = 0.99; % Forgetting factor
delta = 10; % Initialization constant
% Initialize filter coefficients and variables
w = zeros(M, 1); % Filter weights
P = delta * eye(M); % Inverse correlation matrix
% Simulate the input signal and desired output
x = randn(N, 1); % Input signal
d = filter([1, -0.9], 1, x); ?sired signal
% RLS adaptive filtering loop
for n = M+1:N
x_n = x(n:-1:n-M+1); % Input vector
e = d(n) - w' * x_n; % Error signal
k = P * x_n / (lambda + x_n' * P * x_n); % Gain vector
w = w + k * e; % Update weights
P = (P - k * x_n' * P) / lambda; % Update inverse correlation matrix
end
% Display results
figure; plot(d, 'b'); hold on; plot(filter(w, 1, x), 'r');
legend('Desired', 'Filtered Output');
This code illustrates how to apply the RLS adaptive filter to adjust its coefficients to minimize the error between the desired signal and the filter output.
Matlab
0
2024-11-06
Sybase Adaptive Server Enterprise 指导大全
深入探索 Sybase Adaptive Server Enterprise 的核心功能与操作细节。这份综合指南将为您解析系统架构、数据库管理、性能优化等关键领域,帮助您全面掌握这款企业级数据库管理系统。
Sybase
2
2024-04-29
Adaptive-Notch-Filter-Simulation-Code
本资源提供自适应陷波器的MATLAB仿真代码,包括级联型与并联型两种结构,实现方式灵活多样。用户可以选择单中心频率或多中心频率的功能,用于实现信号的自适应陷波和滤波。仿真结果显示,代码性能优秀,滤波效果良好,非常适合对信号处理有需求的工程师和研究人员。
Matlab
0
2024-11-05
Hierarchical Density Order EmbeddingsSpearman的Matlab代码实现
这是在ICLR 2018中实现的模型,使用损失函数学习WordNet上概念的高斯表示。损失函数基于截断的发散,惩罚顺序违规,反映数据的层次结构。学习到的表示捕捉了数据的层次结构,取得了HyperLex任务中的最先进结果。
Matlab
14
2024-07-28
order_by_、group_by_、having的使用比较
order_by_、group_by_、having在SQL查询中的应用有着各自独特的作用和局限性。order_by用于排序返回结果集,group_by用于按列分组汇总数据,having用于筛选group_by分组后的结果。它们在SQL查询语句中扮演不同但关键的角色,深入理解它们的使用可以提升数据查询的效率和准确性。
SQLServer
0
2024-08-13
Database Design Fundamentals
This ebook provides a foundational understanding of database design principles. Geared towards beginners, it explores core concepts using accessible language and practical examples. Readers will gain insights into data modeling, relational databases, and best practices for building efficient and scalable databases.
MySQL
2
2024-05-31
Gradient Design Resources
This archive contains resources related to gradient design.
Hbase
3
2024-06-22