连接Arduino与MATLAB,确保在运行MATLAB脚本之前修改代码以设置正确的COM端口,并关闭Arduino IDE的串行监视器。
Connect-Arduino-MATLAB Minimal Working Code for Real-Time Sensor Readings
相关推荐
MATLAB Code for Traffic Impact Prediction Real-Time Traffic Accident Impact Forecasting
The MATLAB code provided here enables the real-time traffic accident impact prediction for both short-term and long-term traffic conditions in Los Angeles. The dataset is sourced from the LADOT (Los Angeles Department of Transportation). The algorithm used is a slight modification of the Collaborati
Matlab
6
2024-11-06
Linux Soft Real-Time Target v2.4Custom Linux Target for Real-Time Workshop in MATLAB Development
The Linux Soft Real-Time Target is defined by MathWorks for Real-Time Workshop. The target uses the POSIX real-time clock to generate periodic signals, waking up the model process at each time step. The process runs with the highest priority as defined by the scheduler, requiring root privileges to
Matlab
6
2024-11-06
Accelerating Real-Time Analytics with Spark and FPGAaaS
使用 Spark Streaming 进行实时分析
在当今数据驱动的世界里,实时数据分析变得至关重要。P.K. Gupta 和 Megh Computing 在 #HWCSAIS17 中提出了一种利用 Spark Streaming 结合 FPGA as a Service (FPGAaaS) 的技术来加速实时分析的方法。
Spark Streaming 用于实时分析
Spark Streaming 是 Apache Spark 的一个重要模块,它提供了对实时流数据处理的支持。通过微批处理的方式,Spark Streaming 能够高效地处理大量的流数据,并且能够与 Spark 的核心功能(如
spark
5
2024-11-01
Real-Time Compressive Tracking的MATLAB代码下载
这是张磊的Real-Time Compressive Tracking论文代码的MATLAB实现,经过调试验证。
Matlab
11
2024-07-24
Deep Dive into Apache Flink Real-time Data Processing Mastery
Apache Flink深度解析
Apache Flink是一个开源的流处理和批处理框架,专注于实时数据处理。Flink的设计目标是提供低延迟、高吞吐量的数据处理能力,同时支持事件时间和状态管理,使其在大数据领域中成为了重要的工具。将深入探讨Flink的核心概念、架构、API以及实际应用案例。
1. Flink核心概念
流与数据流模型:Flink基于无界数据流模型,意味着它可以处理无限的数据流,而不仅限于批处理。数据流由数据源(Sources)和数据接收器(Sinks)组成。
事件时间:Flink支持事件时间处理,这是实时处理中至关重要的概念,基于数据生成的时间而非处理时间。
flink
9
2024-10-25
Wireless Real-Time Warehouse Management System Using ADO and ACCESS
《无线实时仓库管理系统(ADO+ACCESS):数据库应用与源代码解析》无线实时仓库管理系统是一种先进的企业管理工具,尤其在物流、仓储行业中有着广泛的应用。该系统基于DELPHI编程语言开发,结合了ADO(ActiveX Data Objects)数据访问技术与ACCESS数据库,实现了用户登录模块、系统管理、仓库管理和出入库管理四大核心功能。
用户登录模块是系统的第一道防线,确保只有授权用户能够访问系统。在DELPHI中,可以利用内置的VCL组件如TButton、TEdit和TLabel构建用户界面,配合数据库查询验证用户名和密码,实现安全登录。ADO提供了一种高效的方式来连接和操作数据库,
Access
6
2024-11-01
Building Scalable Real-Time Data Systems Principles and Best Practices
大数据系统构建
在可扩展实时数据系统的构建中,理解其原理和最佳实践至关重要。1. 架构设计: 采用微服务架构,以支持横向扩展。2. 数据流处理: 利用流处理框架,如Apache Kafka或Apache Flink,确保数据的实时性。3. 存储方案: 选择适合的存储技术,如NoSQL数据库,以满足高并发和大数据量的需求。4. 监控与优化: 定期进行系统性能的监控,并对数据处理过程进行优化,确保系统的稳定性与高效性。
算法与数据结构
5
2024-11-02
Enhanced Flexibility Oracle Disaster Recovery and Real-Time Backup Solutions
更高灵活性: 适合异构IT环境部署,跨越平台障碍; 一对一、多对一、一对多等多种部署模式。iStream DDS产品特点包括:更高投资回报: 支持灾备数据实时复用,缓解生产系统压力,减少硬件采购成本; 更低部署、维护成本: 最小网络带宽使用,最小数据传输量,最少业务停机时间,简单高效的web浏览器管理; 更多应用价值: 实时远程数据容灾,业务压力负载均衡,数据实时迁移,企业数据集中,业务数据分发。
Oracle
6
2024-11-04
Serverless-NoSQL-Powered Smart College CMS for Real-Time Exam Management
无服务器NoSQL智能学院CMS 可在数分钟内完成考试发布,简化考试安排流程,包括理论考试、实践考试和内部考试等类型。系统自动将指定课程的所有学生添加至考试。每个考试主题均生成一个专属QR码,便于打印和粘贴到学生试卷上,且包含学生的基本信息。完成阅卷后,扫描该QR码,即可直接更新成绩,实现实时跟踪和更新。管理员可以随时发布考试结果并设定其可见状态,在适当时机展示给相关人员。
NoSQL
5
2024-10-25