Mathematical Modeling of Grey Prediction Analysis
数学建模中的灰色预测模型分析涉及对系统信息的不完全性进行建模,提供对未来趋势的有效预测。该模型通过构建灰色系统,能够处理小样本和不确定性数据,从而为决策者提供科学依据。关键技术包括数据预处理、模型构建和误差分析。通过实例验证,该方法在多个领域展现出良好的应用前景。
Matlab
0
2024-11-03
MATLAB_Development_BPSK_Error_Rate_Simulation
MATLAB开发 - 柏木。在瑞利信道中进行BPSK调制的误码率仿真,探讨信号传输中的误差影响。
Matlab
0
2024-11-03
Statistical Modeling with R Software
统计建模与R软件
一、知识点概览
本教材《统计建模与R软件》主要介绍了统计学的基本理论及其在R语言中的应用。通过本书的学习,读者将能够掌握如何利用R软件进行数据处理、统计分析及模型构建等技能。
二、核心知识点详解
1.1 统计基础知识
1.1.1 随机试验随机试验是指结果不能预先确定的试验。例如,掷一枚硬币的结果可能是正面或反面,这无法事先确切预测。随机试验具有以下特点:- 可重复性:可以多次重复相同的试验。- 不确定性:每次试验的结果是不确定的。- 可观察性:试验的结果是可以观察到的。
1.1.2 样本空间与样本点- 样本空间(Ω):随机试验所有可能结果的集合称为样本空间。- 样本点(ω):样本空间中的每一个基本结果称为一个样本点。
1.1.3 随机事件随机事件是指由一个或多个样本点组成的子集。例如,在掷骰子的试验中,“出现偶数”就是一个随机事件。
1.1.4 集合的运算- 包含关系:如果所有的元素A都在B中,则称A包含于B,记作A⊆B。- 相等:如果两个集合A和B中的元素完全相同,则称A等于B,记作A=B。- 并集:两个集合A和B的所有元素构成的新集合,记作A∪B。- 交集:两个集合A和B共有的元素构成的新集合,记作A∩B。- 差集:集合A去掉B中的元素后剩下的元素集合,记作A-B。
1.1.5 概率的定义概率是对随机事件发生可能性大小的一种度量。对于任意随机事件A,其概率P(A)满足0≤P(A)≤1。若P(A)=0,则称事件A是不可能事件;若P(A)=1,则称事件A是必然事件。
1.1.6 Bayes公式Bayes公式是在已知某个条件发生的前提下计算另一个事件的概率的方法,特别适用于条件概率的计算。公式表达为:[P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}]其中,P(A|B)表示在事件B已经发生的条件下事件A发生的概率。
1.1.7 统计分布- 离散型随机变量的分布:例如伯努利分布、二项分布等。- 连续型随机变量的分布:例如正态分布、均匀分布等。
1.1.8 伯努利分布伯努利分布是一种只有两种可能结果(成功或失败)的离散型随机变量的分布。
算法与数据结构
0
2024-10-31
MATLAB实现TVP-VAR模型的代码
这是一个MATLAB实现的TVP-VAR模型代码,用户可以根据需要修改变量和数据,以便直接运行。
算法与数据结构
2
2024-07-16
A Comprehensive Analysis of Independent Component Analysis
Independent Component Analysis (ICA) stands as a pivotal advancement across diverse fields such as neural networks, advanced statistics, and signal processing. This resource furnishes a thorough introduction to ICA, encompassing the foundational mathematical principles, critical solutions, algorithms, and comprehensive exploration of novel applications in domains like image processing, telecommunications, and audio signal processing. The text meticulously dissects ICA into four core segments:* Fundamental Mathematical Concepts: This section lays the groundwork for understanding the mathematical underpinnings of ICA.* The Basic ICA Model and Solution: A detailed examination of the core ICA model and its associated solution strategies.* Extensions of the Basic ICA Model: Exploration of various extensions to the fundamental ICA model, enhancing its adaptability and applicability.* Real-World Applications of ICA Models: Delving into practical implementations of ICA models across diverse disciplines. The authors, renowned for their contributions to ICA development, provide a comprehensive treatise on relevant theories, cutting-edge algorithms, and real-world implementations, making this an indispensable resource for students and practitioners alike.
Access
3
2024-05-29
用MATLAB开发股票波动率的VaR计算
这是一个简单的MATLAB函数,用于利用几何布朗运动计算股票波动率的VaR。
Matlab
0
2024-08-14
BayesianCART Modeling Gene Regulation with High-Throughput Sequencing Data in MATLAB
购物车MATLAB使用多个高通量测序数据建立基因调控的贝叶斯CART模型。我们关注的问题如下:如果我们有大量大肠杆菌的RNASeq数据,以及与基因启动子结合的转录因子(TFs)的一些ChIPSeq数据,我们如何建模TFs及其结合的基因之间的调控关系?
有一些有用的信息和警告供我们考虑:RNASeq数据揭示了TF和其mRNA形式的基因的活性水平。这很有用,因为当TF是基因的真正调节子时,我们可能期望TF与基因之间存在一些“相关性”。例如,如果TF X是基因Y的激活剂,我们可能期望对应于高Y的高X。关于第一个要点的警告:TF以蛋白质而不是mRNA的形式调节基因,因此实际上只是使用RNASeq数据表示TF活性水平的近似值。对于需要翻译后修饰才能生效的TF,这种近似将很不利。
ChIPSeq数据告诉我们哪个TF在什么亲和力水平上绑定到哪里。这很有用,因为我们可以预料到,当TF X是基因Y的真正调节子时,X倾向于以高亲和力结合在Y附近的某个地方。关于第2点的警告:并非所有结合都是监管性的。如果我们将结合视为热力学事件,则这很容易理解。但是,当我们说调节结合是具
Matlab
0
2024-11-03
Digital Signal Processing and Spectrogram Analysis with MATLAB
语谱图实验介绍
左上角的图形框(the spectrum of the number)表示:输入的数字的频谱图;
左下角的图形框(yuputu)表示:连续输入的号码的语谱图;
右上角的图形框显示输入的数字;
右面中间的16个号码代表按键盘;
“hangup”:表示“挂断电话”,同时将左上角的图形框(the spectrum of the number)和左下角的图形框(yuputu)清空;
“recall”:表示“重播”,同时将上一次输入的一串号码数值显示(yuputu)中,并将上次号码的最后一个号码的频谱图显示在(the spectrum of the number)中。
Matlab
0
2024-10-31
计算风险价值 (VaR) 的方法
计算风险价值 (VaR) 的方法
本部分探讨几种计算风险价值 (VaR) 的常用方法:
数据可视化与标准化: 在进行 VaR 计算之前,对数据进行可视化分析和标准化处理至关重要。数据可视化帮助识别数据特征和潜在风险,而标准化则确保不同风险因素对 VaR 计算的影响一致。
历史模拟法: 历史模拟法是一种非参数方法,直接利用历史数据模拟未来的收益率分布。通过对历史收益率进行排序,可以得到不同置信水平下的 VaR 值。
基于随机收益率序列的蒙特卡罗风险价值计算: 蒙特卡罗模拟是一种强大的工具,可以模拟各种复杂的风险场景。通过生成大量的随机收益率序列,可以估计投资组合在不同情景下的潜在损失,进而计算 VaR。
基于几何布朗运动的蒙特卡罗模拟: 几何布朗运动是一种随机过程,常用于模拟资产价格的走势。通过假设资产价格服从几何布朗运动,可以利用蒙特卡罗模拟估计 VaR。
Matlab
3
2024-05-28