ANDAS is a Java-based web application that provides a convenient way for users to process and analyze their datasets, particularly through sorting and data mining techniques. In this system, tf-idf (term frequency-inverse document frequency) is a crucial algorithm used to measure the importance of specific words in documents. The development language of ANDAS, Java, is renowned for its cross-platform capability and robust library support. Its strong typing ensures code stability and security, enabling ANDAS to deliver reliable services. JavaServer Faces (JSF) in the Java EE ecosystem provides UI component framework for building dynamic, interactive web applications in a declarative manner, enhancing ANDAS's user interface for intuitive data handling and display. XML (eXtensible Markup Language) is employed in ANDAS for data exchange and storage, organizing data in a structured format that facilitates parsing and sharing from diverse sources. JBoss, an open-source Java EE application server, chosen for its stability and scalability, supports ANDAS for web application runtime. Enterprise JavaBeans (EJB), integral to Java EE, empowers ANDAS with services like transaction management, security, and persistence, handling complex data operations and concurrency issues. H2, a lightweight relational database management system, likely used as backend storage in ANDAS, ensures efficient performance and easy integration for small-scale web applications. AJAX (Asynchronous JavaScript and XML) facilitates interactive web app features in ANDAS, enabling asynchronous data loading and user interaction enhancements such as real-time feedback during data filtering or sorting. ANDAS integrates Java, JSF, XML, JBoss, EJB, H2, and AJAX technologies to efficiently and stably handle user datasets, utilizing algorithms like tf-idf to reveal data insights.
ANDAS A Web Application for Dataset Sorting and Data Mining Services with tf-idf
相关推荐
基于TF-IDF的内容相似度算法实现
本项目提供了一个 Python 代码示例,展示了如何使用 TF-IDF 模型计算文本内容的相似度。该算法可用于多种应用场景,例如简单的论文查重等。代码基于他人项目进行修改和优化,仅供学习和参考。
算法与数据结构
11
2024-05-23
Small OCR Application Supported by Data Mining Algorithms
光学字符识别(OCR)是一种技术,它允许计算机自动识别并转换图像中的文本为可编辑、可搜索的数据。这种技术在日常生活中广泛应用,如扫描文档、车牌识别、票据处理等。在本项目中,我们讨论的是一款小型OCR应用程序,它的核心是利用数据挖掘算法来提高识别准确性。我们要理解OCR的工作原理。OCR技术通常包括图像预处理、特征提取、模式识别和后处理四个步骤。图像预处理阶段涉及调整图像质量,例如去除噪声、二值化(将图像转化为黑白)、倾斜校正等。特征提取是识别关键部分,通过检测字母或数字的形状、大小和方向来创建特征向量。模式识别则根据这些特征来匹配已知的字符模板,而后处理用来修正可能的识别错误。在这个小型OCR
数据挖掘
10
2024-10-31
Data Mining Techniques in Coal Mine Enterprises Application and Challenges
In today's digital era, data mining has emerged as a vital tool for extracting valuable knowledge from large datasets across various industries. This is particularly crucial in resource-based sectors like coal mining, where data mining plays an essential role in improving safety, operational efficie
数据挖掘
6
2024-11-05
Web Data Mining Analyzing Hyperlinks,Content,and User Data
本书探讨Web资源分析的方法和技术,深入挖掘超链接、内容以及用户数据,揭示如何有效利用这些数据进行决策和优化。
算法与数据结构
7
2024-10-31
Web Mining Discovering Knowledge from Hypertext Data
Web Mining:从超文本数据中发现知识
核心概念与背景
《Mining the Web: Discovering Knowledge from Hypertext Data》是一本探讨如何从网络中的超文本数据中提取有价值信息的专业书籍。作者Soumen Chakrabarti是数据挖掘领域的知名专家,在书中详细介绍了从万维网这一巨大资源中获取知识的技术和方法。
关键知识点概述
Web Mining定义与分类:
Web Mining是一种从网页及其关联结构中提取有用信息的过程。
主要分类包括:内容挖掘(Content Mining)、结构挖掘(Structure Mining)
数据挖掘
4
2024-10-31
Regression Analysis Fundamentals-Principles of Data Mining and SPSS-Clementine Application
回归分析的基本原理
所谓回归分析法,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式。对于下表中的数据:利用回归分析方法,得到如下的函数关系式:
数据挖掘
8
2024-10-31
Web_Data_Mining_Based_Personalization_Technology_Research.pdf
站点个性化技术的必要性:随着互联网用户数量的剧增,Web站点面临用户需求多样化的问题。传统的Web系统为所有用户提供相同的服务,无法满足用户个性化的需求。因此,提供个性化服务成为Web站点发展的重要趋势。个性化服务可以通过减少用户寻找信息的时间,提高浏览效率,从而增强用户体验。
个性化技术的基本思路:个性化技术包括收集用户的访问信息、分析这些信息,并根据分析结果向访问者提供合适的信息。其核心在于构建用户的特征模型,并将信息主动推送给符合特征的用户。这包括寻找与用户特征相匹配的信息,或者在用户群体中推荐感兴趣的信息。
常用个性化技术的局限性:过去在个性化服务领域中,协同过滤技术被广泛
数据挖掘
5
2024-11-05
Data Mining Principles
数据挖掘原理是指从大量的数据中提取有价值的信息和知识的过程。这个过程通常包括数据的清洗、集成、选择、变换、挖掘和评估等多个步骤。通过运用统计学、机器学习和数据库系统等技术,数据挖掘能够识别数据中的模式和关系,为决策提供支持。
数据挖掘
6
2024-10-31
Data Warehouse and Data Mining Overview
数据仓库与数据挖掘是信息技术领域中的重要组成部分,尤其在当今大数据时代,这两个概念的重要性日益凸显。华北电力大学开设的这门研究生课程,由郑玲老师主讲,深入讲解这两方面的理论与实践。数据仓库(Data Warehouse)是企业级的信息系统,用于存储历史数据并支持决策分析。它通过集成来自不同业务系统的数据,提供一致、稳定且易于分析的数据视图。数据仓库的设计通常包括数据源、数据清洗、数据转换、数据加载和数据展现五个阶段。其中,数据源是各种业务系统中的原始数据;数据清洗是去除数据中的错误、不一致和冗余;数据转换则将数据转换为适合分析的格式;数据加载将处理后的数据加载到数据仓库中;数据展现使用户能通过
数据挖掘
7
2024-11-03