维吾尔语属阿尔泰语系突厥语族,其共振峰频率参数是语音识别和语音合成的重要依据。首次运用实验语音学的基本理论和方法,在维吾尔语语音声学参数数据库的办公环境语料条件下,对维吾尔语四音节元音和谐词进行了统计分析,给出了维吾尔语元音共振峰频率参数和分布规律,并通过四音节元音和谐词实验结果,用实验数据验证了其共振峰频率分布的口耳之学规律。为参数式或波形拼接式语音合成系统中调整合成前的元音和谐问题提供了重要的参考依据。
Study on Formant Patterns of Four-Syllable Vowel Harmony Words in Uyghur
相关推荐
Four Essential Books for Learning MATLAB
本压缩包中包括四本MATLAB学习书籍:1. Matlab_数学手册2. MATLAB R2016完全一本通3. MATLAB编程4. MATLAB基础及其应用教程
Matlab
0
2024-11-01
关联规则挖掘——Sequential Patterns
关联规则挖掘和顺序模式挖掘,欢迎深入了解!
数据挖掘
3
2024-05-13
解读《MongoDB Applied Design Patterns》
《MongoDB Applied Design Patterns》是一本MongoDB经典著作,适合初学者学习,但内容为英文。
MongoDB
3
2024-05-15
Oracle Database Study Notes
Oracle is one of the most widely used database management systems, offering a rich set of features and powerful performance. This Oracle Study Note covers the basics of database management and SQL, providing an in-depth exploration of key concepts.
Data Dictionary: Oracle's data dictionary consists of a series of views and tables that store information about database objects, privileges, and other metadata. For example, dba_tablespaces provides the status of all tablespaces, dba_users displays user information, user_sys_privs lists system privileges for users, and user_tab_privs_made records table permissions granted to other users. Other views, such as user_col_privs_made and user_role_privs, help monitor and manage column-level and role-based permissions.
SQL Statements: SQL is the language used to interact with Oracle. It includes commands for creating users, modifying user properties (such as passwords and default tablespaces), granting and revoking privileges, creating and managing objects (like tables, columns, and constraints), and performing data operations (insert, update, delete). For instance, CREATE USER creates a new user, ALTER USER modifies user attributes, GRANT and REVOKE manage privileges, and INSERT INTO, UPDATE, and DELETE FROM are used to manipulate data.
Constraints and Indexes: Oracle offers various types of constraints, such as NOT NULL, PRIMARY KEY, UNIQUE, FOREIGN KEY, and CHECK, which ensure data integrity and consistency. Indexes speed up data retrieval.
Views and Synonyms: A view is a virtual table based on one or more tables, simplifying complex queries and protecting data. A synonym provides an alias for objects, allowing users to access different objects with the same name, improving database accessibility.
Transactions and Rollbacks: In Oracle, a transaction is a group of logical operations that must either all succeed or all fail, ensuring data consistency. Use COMMIT to commit a transaction, ROLLBACK to undo changes, and SAVEPOINT to set a rollback point.
SQL Utility Commands: Useful SQL commands include DESCRIBE (to view table structure), SELECT * FROM dual (for connection testing), SPOOL (to save query results to a file), SHOW (to display session settings), and HELP (to provide help information).
Oracle
0
2024-11-06
Four Quantum Numbers Explained in Detail for YYYYMMDD between 2000 and 2021
量子数是量子力学中描述电子在原子内部状态的数学概念。它们是用来决定电子所在能级、原子轨道、以及电子在空间中的取向。根据描述,文件中提到的“Four Quantum Numbers”指的是四种量子数:主量子数(n)、角动量量子数(l)、磁量子数(ml)和自旋量子数(ms)。主量子数(n):这个量子数代表了电子所在的能级,其值为正整数(n = 1, 2, 3, ...)。n决定了电子与原子核的距离以及电子的平均动能。角动量量子数(l):也叫做副量子数或轨道角动量量子数,与电子所在的能级相关,它的值取决于主量子数n,并且可以取0到n-1之间的任何整数值。l表明了电子所在能级中的电子云形状以及轨道的角动量大小。例如,l=0代表s轨道,l=1代表p轨道,l=2代表d轨道,l=3代表f轨道,以此类推。磁量子数(ml):这个量子数描述了电子在磁场中的取向或是电子云的特定方向。它取决于角动量量子数l的值,且可以是介于-l到+l之间的任何整数。例如,如果l=2,那么ml的可能值为-2, -1, 0, +1, +2。每个磁量子数ml值对应着一组轨道的特定方向,比如p轨道分为px, py, pz三个方向。自旋量子数(ms):代表电子自身的自旋状态,其值为1/2或-1/2,反映了电子自旋的两个方向,通常被用来表示电子的自旋向上或向下。在给定的文件内容中,可以看到一组日期和对应的四个量子数n, l, ms。其中n、l、ml的值看似是随机的,而ms保持恒定为0.5。由于这些值都是根据量子力学的理论计算得出,因此可能表明这些数字是某些算法或模型下的计算结果。需要说明的是,量子数的值实际上应该是整数或半整数,而文档中的数据可能代表了某种编码或特定计算公式下的结果。在量子力学中,这四个量子数的组合可以决定一个电子在原子中的精确状态。每个电子都有唯一的四个量子数集合,用以确保量子力学中泡利不相容原理的遵守(即在同一原子中,没有两个电子可以有完全相同的四个量子数)。此处描述的文件内容可能用于某种特定的数据库记录、个人信息编码或其他形式的数据表现,但由于文档内容不完整,无法确切知道这些数字的确切含义。因此,我们只能根据量子力学的基本理论推测这些数字的潜在意义。
算法与数据结构
0
2024-10-20
Pattern-Oriented Software Architecture Concurrency and Networking Patterns
POSA2是POSA系列的第二卷,于2000年出版。POSA2中的17个模式构成了一个模式语言,涵盖了与并发和网络相关的各种问题。这些模式包括服务访问和配置、事件处理、同步和并发等核心元素。所有模式均提供了丰富的示例,并展示了在多种编程语言(包括C++、C和Java)中的应用。
Access
2
2024-07-18
Sentence Function POS Tagging for Remaining Words in SentenceParseNew-MATLAB Development
将字符串作为输入,并为句子中的其余单词给出最可能的词性标签。它检查: 1)根据训练数据中该词的标签,该词的每个标签的概率;2)根据前一个词的标签,该词的每个标签的概率,与训练数据比较并将两者相乘以给出单词最可能的标签。因此,即使您给它添加一个新名词,它也可能会将文章后面的单词标记为名词。如果您有任何建议或疑问,请通过samyuktaramnath[at]gmail[dot]com或hale2bopp[at]gmail[dot]com与我联系。
Matlab
0
2024-11-03
Data-Science-R-Resources-and-Study-Plan
这是一个R的数据科学资料库,涵盖统计分析、学习和整体数据科学相关的所有资源。我将上传自己编写的.R代码,以供将来参考。我的目标是在一年内完成以下内容(将持续更新):
2015年夏季
漩涡 + Coursera的数据科学课程[1, 2]
描述性统计简介 + 推断性统计简介(Udacity)
使用R进行数据分析(Udacity)
2015年秋季
Coursera数据科学课程[3, 4, 5, 6, 7]
统计学习(斯坦福) + 教科书
2016年春季
Coursera数据科学课程[8, 9]
面向黑客的机器学习教科书
Coursera数据科学专业课程
(1) 数据科学家工具箱(Coursera)
(2) R编程(Coursera)+ 漩涡(“R编程”)
(3) 获取和清洁数据(Coursera)+ 漩涡(“获取和清洁数据”)
(4) 探索性数据分析(Coursera)
统计分析
0
2024-10-27
Case Study 1-SQL Injection Analysis
6.2 Case Study 1
6.2.1 Problem DescriptionThis case helps a company optimize a backend news publishing system. The frontend is a large website, with a Java application connecting to the database via a middleware connection pool. The operating system is Sun OS 5.8, and the database version is 8.1.7.System Symptoms: Accessing news pages is extremely slow, with backend publishing management experiencing the same issues, often taking tens of seconds to return. This performance is unacceptable, necessitating optimization and issue identification.
6.2.2 Checking and Tracking Database ProcessesSince the publishing system is non-real-time, diagnostics were performed at night with minimal user access. I clicked the relevant pages on the frontend while tracking backend processes. I queried the v$session view to obtain process information:
SQL> select sid, serial#, username from v$session;
SID SERIAL# USERNAME
---------------
1 1
2 1
3 1
4 1
5 1
6 1
7 284 IFLOW
11 214 IFLOW
12 164 SYS
16 1042 IFLOW
10 rows selected.
Oracle
0
2024-11-04