Vivek Kale's Creating Smart Enterprises goes smack-dab at the heart of harnessing technology for competing in today's chaotic digital era. Actually, for him, it's SMACT-dab: SMACT (Social media, Mobile, Analytics and big data, Cloud computing, and Internet of Things) technologies. This book is required reading for those that want to stay relevant and win, and optional for those that don't." ―Peter Fingar, Author of Cognitive Computing and business technology consultant. Creating Smart Enterprises unravels the mystery of social media, mobile, analytics, big data, cloud, and Internet of Things (SMACT) computing and explains how it can transform the operating context of business enterprises. It provides a clear understanding of what SMACT really means, what it can do for smart enterprises, and application areas where it is practical to use them. All IT professionals who are involved with any aspect of a SMACT computing project will profit by using this book as a roadmap.
Creating Smart Enterprises Leveraging SMACT Technologies for Business Innovation
相关推荐
Big Data Technologies in Smart Transportation Systems
随着科技的迅猛发展,大数据时代为智能交通领域带来了诸多变革。将探讨在大数据时代背景下,人工智能、大数据等新技术在智能交通中的应用,以及这些技术如何推动智能交通系统的重大变革。\\智能交通系统面临的主要痛点包括信息资源整合、数据智能分析决策、大数据全生命周期的新技术应用、信息主动推送以及智能网联汽车的发展等。这些痛点需要通过采用新技术来解决,从而提升交通系统的效率、安全性和智能化水平。\\信息资源整合是智能交通发展的基础。通过整合来自不同交通参与者和交通基础设施的数据资源,可以实现信息共享和互联互通。这不仅提高了数据的可用性,还能够通过大数据分析技术,对交通模式进行深入挖掘和预测,为交通管理和规划提供决策支持。\\数据智能分析决策在智能交通中的应用是大数据技术的核心。通过对海量交通数据的智能分析,可以优化交通流量、降低事故率、减少拥堵现象。例如,基于机器学习和数据挖掘技术,可以构建模型预测交通流、识别交通违规行为及制定最优交通信号控制策略。\\大数据全生命周期管理是智能交通中的另一个关键技术。从数据收集、存储、处理到分析和应用,每一个环节都至关重要。大数据技术使得从海量数据中提取有价值信息成为可能,包括实时数据、历史数据和预测数据。\\信息主动推送是提升交通系统智能化程度和用户体验的重要手段。通过分析用户需求和实时交通状况,可以主动向驾驶员或乘客提供个性化的交通信息,如路况信息、交通管制通知、公交路线推荐等。\\智能网联汽车技术的发展,是智能交通领域最引人注目的趋势之一。智能网联汽车通过与交通基础设施、其他车辆及互联网的互联互通,能够实现安全驾驶、自动泊车、远程控制等功能,极大提升了驾驶的便捷性和安全性。\\在研究现状方面,智能视频分析、交通信号控制、智能交通平台应用及智能网联汽车等领域已取得一些进展。例如,智能视频分析技术在交通监控和事故检测中的应用逐渐成熟,交通信号控制系统正在向智能化、动态化方向发展,智能交通平台则提供了更加集成化的交通管理解决方案。新技术的应用,如自然语言处理、计算机视觉、智能化交通信号控制、汽车电子标识、数据湖蓝光存储等,正在智能交通领域带来革命性的变化。
算法与数据结构
0
2024-10-31
Smart Access 源代码
Smart Access 2000 年 6 月全部源码,适用于 Access97、Access2000、Access2002。
Access
3
2024-05-25
Smart Access 2000 源码
提供 Smart Access 2000 年 5 月的完整源码。
Access
4
2024-04-30
Prairie Technologies MATLAB Toolbox Small Function Set for Interface with Prairie Technologies Confocal Microscopes
Prairie Technologies MATLAB Toolbox—A small collection of MATLAB functions that enables simple interface with confocal microscopes manufactured by Prairie Technologies.
File Descriptions:
import_PrairieTif.m: This function imports TIFF images captured by Prairie Technologies' confocal laser scanning microscopes into MATLAB using the xyczt axis convention. This code has been tested on a specific system, so if it does not work with your images, please submit bugs and sample images for further investigation.
prairieView_Com.m: This script allows low-level communication with Prairie View via a TCP connection. It is used for automation tasks such as directing the microscope to a workbench position, loading different settings, and retrieving images. When Prairie View is open, it automatically listens on port 1236 for commands. Commands are simple text messages—refer to the Prairie Script API for further details.
Matlab
0
2024-11-05
SAP Business One系统安装指南
这份指南提供了SAP Business One系统及其数据库的安装和设置的完整信息。
在2004版本中,SAP Business One支持Microsoft SQL Server、Sybase ASE和IBM DB2数据库。
DB2
1
2024-05-19
StarRing Big Data Introduction to Technologies
星环大数据平台权威指南,国内大数据平台,Hadoop,Spark等大数据技术入门介绍,星环内部培训资料。
Hadoop
0
2024-11-01
Search Engine Principles,Technologies,and Systems
前言
第一章 引论
第一节 搜索引擎的概念
第二节 搜索引擎的发展历史
第三节 一些著名的 搜索引擎
上篇 WEB 搜索引擎基本原理和技术
第二章 WEB 搜索引擎工作原理和体系结构
第一节 基本要求
第二节 网页搜集
第三节 预处理
第四节 查询服务
第五节 体系结构
第三章 WEB信息的搜集
第一节 引言
一、超文本传输协议二、一个小型 搜索引擎 系统
第二节 网页搜集
一、定义 URL 类和 Page 类二、与服务器建立连接三、发送请求和接收数据四、网页信息存储的天网格式
第三节 多道搜集程序并行工作
第四节 如何避免网页的重复搜集
第五节 如何首先搜集重要的网页
第六节 搜集信息的类型
第七节 本章小结
第四章 对搜集信息的预处理
第一节 信息预处理的系统结构
第二节 索引网页库
第三节 中文自动分词
第四节 分析网页和建立倒排文件
第五节 本章小结
第五章 信息查询服务
第一节 查询服务的系统结构
第二节 检索的定义
第三节 查询服务的实现
第四节 本章小结
中篇 对质量和性能的追求
第六章 可扩展搜集子系统
第一节 天网系统概述和集中式搜集系统结构
第二节 利用并行处理技术高效搜集网页的一种方案
第三节 本章小结
第七章 网页净化与消重
第一节 网页净化与元数据提取
统计分析
0
2024-11-04
MATLAB Creating Built-in Colormap Charts
这是在MATLAB:registered:中创建内置颜色图图表的示例。阅读MATLAB文档中的“colormap”函数。有关更多示例,请转到MATLAB绘图库- http://www.mathworks.com/discovery/gallery.html
Matlab
0
2024-11-06
Data Mining Techniques in Coal Mine Enterprises Application and Challenges
In today's digital era, data mining has emerged as a vital tool for extracting valuable knowledge from large datasets across various industries. This is particularly crucial in resource-based sectors like coal mining, where data mining plays an essential role in improving safety, operational efficiency, and decision-making. Data mining refers to the process of applying algorithms to identify patterns, correlations, and trends within large datasets. In the context of coal mining enterprises, this technology can analyze historical data to predict potential hazards, such as gas explosions or water inflow incidents, thereby enhancing mine safety.
In terms of production optimization, data mining helps companies improve coal yield and resource utilization by identifying key factors influencing output. By analyzing data from various stages of production, mining companies can devise more efficient strategies, boosting production and reducing costs, thereby increasing profitability.
Additionally, data mining has wide-ranging applications in other aspects of coal mine management, including human resource management and equipment maintenance. By analyzing employee performance data, it helps in identifying high-performing individuals, guiding talent management and development. In equipment maintenance, data mining allows for predictive analytics, identifying potential failures before they occur, thus reducing downtime and minimizing operational disruptions.
Despite its numerous benefits, the practical implementation of data mining in coal mining enterprises faces several challenges, such as data quality control, model selection, and result interpretation. Data quality is crucial to ensuring accurate and reliable results, necessitating robust data management systems. Moreover, the selection and optimization of mining-specific algorithms require continuous refinement to achieve optimal outcomes. The ultimate goal of data mining is to translate analytical results into actionable insights, requiring companies to develop mechanisms for quick and accurate decision-making.
In summary, the application of data mining in coal mining enterprises is a complex system requiring a strategic approach. It involves preparing for organizational changes, upgrading technical capabilities, and fostering talent and cultural development. As technology continues to advance, the role of data mining will undoubtedly expand, offering new opportunities for efficiency and safety in the mining industry.
数据挖掘
0
2024-11-05