无服务器NoSQL智能学院CMS 可在数分钟内完成考试发布,简化考试安排流程,包括理论考试、实践考试和内部考试等类型。系统自动将指定课程的所有学生添加至考试。每个考试主题均生成一个专属QR码,便于打印和粘贴到学生试卷上,且包含学生的基本信息。完成阅卷后,扫描该QR码,即可直接更新成绩,实现实时跟踪和更新。管理员可以随时发布考试结果并设定其可见状态,在适当时机展示给相关人员。
Serverless-NoSQL-Powered Smart College CMS for Real-Time Exam Management
相关推荐
Real-Time Compressive Tracking的MATLAB代码下载
这是张磊的Real-Time Compressive Tracking论文代码的MATLAB实现,经过调试验证。
Matlab
1
2024-07-24
Deep Dive into Apache Flink Real-time Data Processing Mastery
Apache Flink深度解析
Apache Flink是一个开源的流处理和批处理框架,专注于实时数据处理。Flink的设计目标是提供低延迟、高吞吐量的数据处理能力,同时支持事件时间和状态管理,使其在大数据领域中成为了重要的工具。将深入探讨Flink的核心概念、架构、API以及实际应用案例。
1. Flink核心概念
流与数据流模型:Flink基于无界数据流模型,意味着它可以处理无限的数据流,而不仅限于批处理。数据流由数据源(Sources)和数据接收器(Sinks)组成。
事件时间:Flink支持事件时间处理,这是实时处理中至关重要的概念,基于数据生成的时间而非处理时间。
状态管理:Flink允许操作符在处理过程中保持状态,这对于实现复杂的数据转换和计算至关重要。
窗口(Windows):Flink提供多种窗口机制,如滑动窗口、会话窗口和tumbling窗口,可根据时间或数据量定义窗口,进行聚合操作。
2. Flink架构
JobManager:作为Flink集群的控制中心,负责任务调度、资源管理和故障恢复。
TaskManager:负责执行计算任务,接收JobManager分配的任务,并与其他TaskManager进行数据交换。
数据流图(Data Stream Graph):每个Flink作业表示为一个有向无环图(DAG),其中节点代表算子(operators),边代表数据流。
3. Flink API
DataStream API:用于处理无界数据流,提供丰富的算子,如map、filter、join和reduce等。
DataSet API:处理有界数据集,适用于批处理场景,但也可在流处理中使用。
Table & SQL API:自Flink 1.9引入,提供SQL风格的查询接口,简化了开发过程。
4. Flink的实时处理
状态一致性:Flink提供几种状态一致性保证,如exactly-once和at-least-once,确保数据处理的准确性。
检查点(Checkpoints)与保存点(Savepoints):通过周期性检查点和可恢复保存点提升了Flink的容错机制。
flink
0
2024-10-25
实时大数据分析的革新Real-time Big Data Analytics的新视角
深入了解转换和数据库级互动,确保使用Storm处理的消息可靠性。实施策略以解决实时数据处理的挑战,加载数据集,构建查询,并使用Spark SQL进行推荐。
spark
1
2024-07-13
Top NoSQL Time Series Databases Overview
Time Series Database (TSDB) is a database system specifically designed for efficiently storing, managing, and processing time series data. This type of data typically involves numerical values associated with specific timestamps, commonly found in monitoring, IoT, financial transactions, and operational analytics. This article explores several key NoSQL time series databases, including InfluxDB, ScyllaDB, CrateDB, and Riak TS, as well as Apache Druid, highlighting their characteristics and application scenarios.
1. InfluxDB
InfluxDB, developed by InfluxData, is an open-source time series database designed for real-time analysis and big data. It features high write performance and low-latency query capabilities, supporting complex time series data queries. InfluxDB is particularly suited for handling data from sensors, logs, metrics, and is widely used in monitoring systems, IoT applications, and real-time analysis scenarios.
2. ScyllaDB
ScyllaDB is a high-performance distributed database based on Apache Cassandra. It offers higher throughput and lower latency than native Cassandra. Its optimized time series data processing capabilities make it ideal for real-time applications such as monitoring and log analysis. ScyllaDB supports multi-data center deployments to ensure high availability and consistency of data.
3. CrateDB
CrateDB is a column-oriented distributed SQL database that can handle large-scale time series data. It provides a SQL interface, making time series data operations more familiar to traditional database users. CrateDB is suitable for projects that require rapid analysis of large amounts of time series data and prefer using SQL for querying.
4. Riak TS
Developed by Basho Technologies, Riak TS is a NoSQL solution focused on time series data. It inherits the core features of Riak, such as high availability and scalability. Riak TS is suitable for applications that need to store and retrieve time series data in a distributed environment, such as recording equipment status in the telecommunications or energy industries.
5. Apache Druid
Although Druid is not a traditional NoSQL database, it is a columnar data store designed for real-time analytics. Druid is renowned for its excellent Online Analytical Processing (OLAP) performance and low-latency query capabilities, making it suitable for big data real-time analysis and business intelligence applications.
These databases each have their strengths. InfluxDB and Druid excel in real-time analytics, ScyllaDB and CrateDB offer powerful distributed processing capabilities, while Riak TS specializes in distributed storage and retrieval. Developers should consider data scale, performance requirements, query complexity, SQL support, and team expertise when choosing a solution.
NoSQL
0
2024-10-30
Smart Access 源代码
Smart Access 2000 年 6 月全部源码,适用于 Access97、Access2000、Access2002。
Access
3
2024-05-25
Smart Access 2000 源码
提供 Smart Access 2000 年 5 月的完整源码。
Access
4
2024-04-30
Exam 数据库架构
Exam 数据库是人力资源部 SQL Server 数据库四级认证所使用的数据库。该文档详细介绍了 Exam 数据库的架构和内容。
SQLServer
2
2024-05-31
Library Management System Documentation
Library Borrowing Management System Key Points
1. System Overview
The Library Borrowing Management System is an information management tool designed for library environments. By leveraging computer technology, this system ensures efficient library resource management and optimized usage. In addition to traditional borrowing and returning functionalities, the system provides enhanced management features such as user authentication, book inventory management, library card issuance, book borrowing and returning, information search, and maintenance.
2. System Functional Modules
Based on requirements analysis, the system includes the following core modules:
User Authentication
Verifies identities for both administrators and readers, ensuring only authorized users can access the system.
Administrators have higher-level access, allowing additional operations such as data maintenance.
Book Inventory Management
Manages the input of new books, including key information: ID, title, author, publisher, etc.
Supports batch imports for greater efficiency.
Library Card Issuance
Issues library cards to new readers and records necessary details.
Provides loss reporting and replacement services.
Book Borrowing and Returning
Enables readers to borrow books and logs borrowing dates.
Supports book returns, with overdue checks and fine calculations.
Information Search and Maintenance
Offers query functions for book, reader, and borrowing records.
Allows administrators to edit and maintain book and reader information.
Overdue Management
Automatically identifies and calculates fines for overdue books.
Supports special marking and notifications for overdue items.
Lost Books and Library Card Loss Management
Allows readers to report lost books, with the system automatically calculating compensation.
Provides library card loss and cancellation options for data security.
3. Detailed Requirements Analysis
Data Requirements
Reader Information: Including card ID, name, gender, etc.
Book Category Standards: Category ID, name.
Book Inventory: Book ID, title, category, author, etc.
Borrowing Records: Card ID, book ID, borrowing date.
Return Records: Card ID, book ID, return date.
Overdue Fines: Reader card ID, book ID, fine amount.
Transaction Requirements
Reader Information Management: Supports querying, adding, deleting reader data.
Book Information Management: Provides browsing and maintenance functions (add, delete).
Borrowing Information Management: Browsing and maintenance of borrowing records.
Return Information Management: Browsing and updating return records.
Fine Management: Browsing and updating fine information.
MySQL
0
2024-10-25
Dialect Exam Database with Audio for Various Regions
标题中的“各地方言测试方言考试ACCESS数据库含音频”表明这是一个使用ACCESS数据库系统构建的资源,专门用于测试和学习各种地方方言。ACCESS是Microsoft Office套件中的数据库管理工具,常用于存储、管理和检索数据。在这个数据库中,包含了与方言相关的音频资料,这可能意味着每个方言都有对应的语音样本,供学习者听辨和模仿。描述中提到的陕西、四川、北京、广东,河南、东北的方言代表了中国的六大主要方言区。这些方言具有显著的地域特色,语音、词汇甚至语法都有所不同。例如:- 陕西话:北方方言区,有其独特的声调变化。- 四川话:西南官话的代表,以丰富的俚语和独特的发音著称。- 北京话:普通话的基础,但有特有的儿化音和词汇。- 广东话:粤语的典型代表,音韵系统和词汇独特。- 河南话:属于中原官话,鼻音较重。- 东北话:广地区分布,音域宽广,节奏感鲜明。音频由当地人提供,确保了方言的正宗性。“方言考试”和“方言测试”标签暗示这个数据库可能包含一系列测试题,帮助用户检验自己对各种方言的理解程度。这些测试可能涉及听辨、模仿或理解方言中的特定词汇和短语。通过这样的考试,学习者可以了解自己的进步,同时加深对不同方言文化的理解。至于“MP3”标签,这通常指的是音频文件格式,意味着数据库中的音频样本是以MP3这种广泛支持的音频编码格式存储。MP3文件体积小,便于在网络上传输和存储,适合在各种设备上播放。这个压缩包文件提供了一个全面的方言学习和测试平台,包含来自六个主要方言区的原汁原味的音频样本,以及可能的考试或测试形式。用户可以通过ACCESS数据库进行系统性的学习,同时借助MP3音频文件提高听力和口语能力。对于对中国方言有兴趣的人来说,这是一个非常有价值的资源。
Access
0
2024-10-28