探讨了如何利用数据挖掘技术,分析网站日志文件和用户浏览行为,建立网页个性化推荐系统,以改善网站页面设计,更符合用户个人喜好,有效缩短用户搜索时间。详细讨论了数据挖掘与个性化推荐系统的关系,网站日志文件的作用,以及用户浏览行为分析的核心作用。另外,介绍了网页相关性分析的方法和构建个性化推荐系统的步骤,还强调了验证推荐系统效果的重要性。最后,还涉及到数据过滤和偏好度计算这两项关键技术,以及在系统设计中如何保护用户个人信息的问题。
数据挖掘技术在网页个性化推荐系统中的应用分析(2010年)
相关推荐
基于数据挖掘的个性化服务系统* (2002年)
站点个性化系统是利用多种WEB挖掘技术构建的,根据用户的访问模式和当前需求提供实时个性化服务。该系统采用事务聚类、关联规则技术等数据挖掘方法分析用户行为,实验表明其性能优异。
数据挖掘
6
2024-08-08
个性化推荐系统架构基于用户画像的大数据实践
个性化推荐系统架构包括离线算法库和在线触点意图聚焦与发散,以及画像融合过滤排序用户行为反馈。推荐效果通过数据存储中心(如Hadoop、Hive、Hbase、MySQL、Redis)和任务调度中心进行建模,模型配置管理和监控特征内容用户特征Jacarrd、cosine、CF、content base、FPGrowth、LDA、LR、DT。场景涵盖PC、无线以及A/B Testing,评估指标包括F1、RMSE、AUC,推送内容质量评分和索引规则模型训练。相似度内容候选和用户行为应用库(类别、标签)通过语义分析和关联计算实现。
算法与数据结构
10
2024-07-14
个性化信息服务与Web数据挖掘技术深度融合
个性化信息服务与Web数据挖掘技术深度融合
信息爆炸时代,海量数据充斥网络,用户难以快速找到所需信息。个性化信息服务应运而生,它能够根据用户兴趣和需求,精准推送信息,提升用户体验。Web数据挖掘技术作为从海量数据中提取有效信息的利器,为实现个性化信息服务提供了强大的技术支持。
Web数据挖掘技术助力个性化信息服务:
用户建模: 通过分析用户浏览历史、搜索记录、社交行为等数据,构建用户画像,深入了解用户兴趣和需求。
信息过滤: 基于用户模型,过滤无关信息,将用户真正感兴趣的内容推送给用户,提高信息获取效率。
个性化推荐: 根据用户历史行为和兴趣偏好,推荐相关内容,例如商品、新闻、音乐等,提升
数据挖掘
15
2024-05-27
基于网络挖掘的用户个性化服务
利用网络日志挖掘技术和频繁路径集算法,构建网络用户个性化服务模型,解决网络用户个性化服务问题。
数据挖掘
13
2024-05-25
基于大数据技术的社交网络用户兴趣个性化推荐模型研究
为了克服传统分析方法易受噪声和人为因素干扰导致分析结果不准确的缺陷,本研究提出了一种基于大数据的社交网络用户兴趣个性化推荐模型。该模型以矢量空间模型为基础,深入分析了用户兴趣推荐模型的结构及其与周边模型的交互关系,并在此基础上划分了服务器网络部署模块,设计了模型的运行网络结构。为了提高模型的效率和可扩展性,本研究利用MapReduce模型将任务分发到分布式计算机集群中,从而构建出能够满足用户个性化需求的推荐模型。此外,模型还利用了大数据双层关联规则数据挖掘技术来获取用户感兴趣的网络数据,并根据推荐结果评估用户对推荐内容的兴趣程度。实验结果显示,该分析方法的准确率高达98%,且对大规模社交网络用
数据挖掘
14
2024-05-25
爱普生EPSON维修技术手册的个性化数据
除了一个GUI对象定义的标准属性以外,程序可以定义要控制的数据的特殊属性。程序员可以通过附加属性将任意类型的数据添加到GUI对象中,实现个性化定制。可以存储任意数量的数据。
Matlab
7
2024-09-25
灵活笔记个性化定制的笔记应用
【灵活笔记】是一款基于Node.js开发的笔记应用,其特色在于完全定制化,用户可以根据个人需求打造独特的笔记体验。应用采用GraphQL作为查询语言,以提供灵活的数据获取方式,并选择了非关系型数据库(NoSQL),例如MongoDB,体现了现代Web开发的趋势——轻量、高效和高度可扩展。Node.js在后端开发中使用JavaScript语言,使得前后端可以使用同一种语言,极大地提高了开发效率。Node.js的异步非阻塞I/O模型非常适合处理高并发场景,这对于在线笔记应用来说尤为重要,因为用户可能会频繁地创建、编辑和检索笔记。GraphQL作为强大的API设计工具,允许客户端精确指定数据需求,减
NoSQL
7
2024-09-13
大数据挖掘在高校图书馆个性化服务应用
大数据挖掘技术应用于高校图书馆个性化服务,可深挖用户信息、分析行为模式,实现精准推送和资源推荐,提升用户体验。
数据挖掘
13
2024-05-01
个性化查询存储与数据共享的系统设计
8.3个性化查询(Google个性化查询)是一个双向服务;该服务记录用户的查询和点击,涉及多个 Google 服务,如Web查询、图像和新闻。用户可以浏览其查询历史,重复先前的查询和点击,还可以基于Google使用历史模式定制个性化查询结果。个性化查询使用 Bigtable 存储用户数据,每个用户都有唯一的用户ID,与特定列名绑定。一个单独的列族用于存储各种行为类型(例如,存储所有 Web查询 的列族)。每个数据项被标注Bigtable的时间戳,记录了对应的用户行为发生时间。
个性化查询通过基于 Bigtable 的 MapReduce 任务生成用户数据图表,这些图表用于定制化当前查询结果。数
Hadoop
6
2024-10-25