西比尔女巫(Sibyl)是一个专注于递归神经网络(RNN)形成交易信号的回测和实时交易平台,通过TCP通信通道实现服务器/客户端模型,支持分布式系统或单一系统中的回测和实时交易。项目基于C++/CUDA和Python/Theano技术,提供灵活的RNN结构,有效管理股票/ETF/ELW的交易请求和状态转发。
使用递归神经网络进行股票/ETF/ELW回测与实时交易平台
相关推荐
PythonFinance使用Python进行数据获取、挖掘与交易回测
PythonFinance 是一个基于Python的金融系统,它为金融分析和交易提供了强大的工具集。这个系统的主要特点在于其 数据获取、 数据挖掘 以及 回测交易 的功能。掌握这些技能至关重要,它们能帮助投资者和分析师更好地理解市场动态、制定有效的投资策略,并通过 历史回测 来验证这些策略的有效性。
数据获取
PythonFinance 系统通常会利用各种Python库如 pandas_datareader、 yfinance 和 Alpha Vantage API 来获取实时和历史的金融市场数据。例如, pandas_datareader 允许用户从 Yahoo Finance、Google
数据挖掘
7
2024-10-26
递归神经网络设计与应用
《递归神经网络设计与应用》是一本涉及神经网络、大数据、优化、建模与控制的学习资料,专注于递归神经网络的理论与实际应用。
算法与数据结构
6
2024-10-10
漫谈递归神经网络:RNN与LSTM
漫谈递归神经网络:RNN与LSTM
递归神经网络 (RNN) 是一种专门处理序列数据的神经网络,它能够捕捉时间序列信息,在自然语言处理、语音识别等领域有着广泛的应用。然而,传统的RNN存在梯度消失和梯度爆炸问题,难以学习到长距离依赖关系。为了克服这些问题,长短期记忆网络 (LSTM) 应运而生。LSTM 通过引入门控机制,可以选择性地记忆和遗忘信息,从而有效地捕捉长距离依赖关系。
RNN:捕捉序列信息的利器
RNN 的核心在于其循环结构,允许信息在网络中传递和积累。每个时间步,RNN 接收当前输入和前一时刻的隐藏状态,并输出新的隐藏状态和预测结果。这种循环结构使得 RNN 能够学习到序列数据中
算法与数据结构
9
2024-05-27
使用Matlab进行BP神经网络数据分类
详细介绍了如何使用Matlab实现BP神经网络进行数据分类的方法。提供了具体的代码示例和详细说明,帮助读者快速理解和应用。
Matlab
7
2024-09-27
使用BP神经网络进行光伏出力预测
在MATLAB中通过神经网络对分布式电源的出力进行预测。
Matlab
3
2024-11-04
二手图书交易平台
利用SQL Server 2008和Visual Studio 2010开发的C#程序,实现用户注册登录、交易提交、图书添加、参与交易、书签保存、留言功能、举报系统及后台管理等功能。
SQLServer
10
2024-07-30
使用多列卷积神经网络进行人群计数
MindSpark Hackathon 2018利用MCNN在ShanghaiTech数据集上进行人群计数。这是CVPR 2016论文“通过多列卷积神经网络进行单图像人群计数”的非正式实施。预测工作正在进行中,同时进行热图生成。安装Tensorflow、Keras和OpenCV,并克隆此存储库以使用预训练模型。您可以从以下位置下载ShanghaiTech数据集:投寄箱://www.dropbox.com/s/fipgjqxl7uj8hd5/ShanghaiTech.zip dl
Matlab
6
2024-08-01
基于网络技术的在线商品交易平台设计
数据库课程设计涉及毕业设计,重点在于使用SSM框架开发基于WEB技术的在线商品交易平台。
MySQL
7
2024-08-05
使用顺序ISTA算法创建的递归神经网络(RNN)的Matlab代码
这篇论文介绍了通过展开迭代阈值算法(ISTA)创建的顺序稀疏编码网络的Matlab代码。论文作者包括S. Wisdom,T. Powers,J. Pitton和L. Atlas。它在ICASSP 2017和arXiv上分别发表。代码支持了NIPS 2016复杂可解释机器学习研讨会。如果需要复制论文结果,请访问作者提供的网站。同时,代码还支持Caltech-256数据集的预处理。
Matlab
8
2024-07-20