循序渐进掌握云计算大数据离线计算,了解编程步骤的每一个细节。
云计算大数据实战详解
相关推荐
大数据实战指南
本手册涵盖大数据入门基础,包含 Hadoop 环境部署、核心组件 HDFS、MapReduce、流式计算框架 Storm 和数据挖掘相关知识。
Hadoop
4
2024-05-13
Hadoop大数据实战
深入解析Hadoop原理和特性,掌握实用技术和集群搭建技巧。
Hadoop
7
2024-04-30
Hadoop大数据实战宝典
课程内容
HBase案例分析
MapReduce 高阶应用
多语言 MapReduce 编程
Chukwa 集群监控系统
Greenplum 架构解析
Flume 日志收集系统实战
视频教学
课程包含详细的视频教程,助你快速入门Hadoop大数据技术。
Hadoop
3
2024-05-19
云计算和大数据详解PPT
云计算和大数据密不可分,如同硬币的正反面。大数据的处理必须依赖于分布式架构,以处理海量数据。其特点在于分布式数据挖掘。大数据技术依赖于云计算的分布式处理、分布式数据库、云存储和虚拟化技术。它是一种成本较低、快速采集、处理和分析大规模数据的新一代技术。大数据技术的发展使得处理海量数据变得更加便捷、经济且快速,已经成为各行业商业模式改变的重要驱动力。本资源详细介绍了大数据和云计算的基本概念、技术及其应用。包括绪论、大数据环境下的云计算架构、大数据关键技术与应用、云存储、云服务与云安全、云计算应用、虚拟化技术、Hadoop和Spark平台、分布式文件系统及并行计算框架、分布式数据存储与大数据挖掘。
Hadoop
3
2024-07-13
华为金融大数据实战方案
华为金融大数据解决方案实战运用,可作为金融大数据客户汇报素材。
Hadoop
2
2024-05-20
大数据实战系列探索(持续更新)
在本大数据实战系列中,我们将深入探讨大数据处理的核心概念和关键技术,这些技术在当今信息化社会中具有重要意义。大数据不仅仅是海量数据的处理,更是如何高效地从中获得有价值的见解。参与者将有机会亲自实践,深入体验大数据的魅力。基础架构通常基于Hadoop生态系统,包括开源的HDFS和MapReduce。HDFS是分布式文件系统,将数据集分块存储在多台服务器上,提供高容错性和可扩展性。MapReduce是一种并行处理模型,用于生成和处理大规模数据。搭建大数据平台需要下载Hadoop发行版,配置环境变量,并正确设置核心配置文件如core-site.xml、hdfs-site.xml和mapred-site.xml。此外,还需安装YARN来管理资源调度。此外,学习NoSQL数据库如HBase,建立在HDFS上,适合实时读写操作,并提供强大的索引和查询功能。数据清洗和预处理通常使用Apache Pig或Apache Hive,分别提供高级数据处理语言和基于SQL的接口,简化大数据分析。另外,Spark作为一种快速、通用且可扩展的大数据处理框架,支持多种工作负载,包括批处理、交互式查询和流处理。学习Spark核心模块如Spark Core、Spark SQL、Spark Streaming和Spark MLlib将极大地增强实战项目的能力。
Hadoop
2
2024-07-26
云计算与大数据的结合
大数据架构设计,包括云计算与大数据的关系;各行业大数据计算架构案例等
Hadoop
3
2024-07-31
大数据实践—Storm流计算实时异常监控
采用Storm流计算构建日志收集系统,实时汇聚日志数据,并结合离线数据分析,通过预先设定的规则对数据进行异常监测,实现实时告警和及时响应。
算法与数据结构
9
2024-04-30
大数据、云计算应用创新探讨
由清华大学博士毕业的刘鹏院长带来大数据、云计算创新应用的精彩分享。内容涵盖了大数据处理、云计算优化、实际应用案例等多个方面。刘鹏院长现任南京大数据研究院院长,并兼任中科院电子所苏州研究院大数据首席科学家。
算法与数据结构
4
2024-05-20