利用深度学习技术进行手写数字识别的研究,采用MATLAB实现并详细描述了相关代码。
基于深度学习的手写数字识别研究
相关推荐
matlab实现MNIST手写数字识别深度学习原理与实践
当前,机器学习和深度学习技术在特定领域得到广泛应用,尤其是MNIST手写数字识别。深度学习框架众多,各具特色,虽然工具只是辅助,却大幅简化了复杂的任务。通过matlab展示了一个基础的深度学习网络模型,不借助第三方库,逐步实现算法原理,深入理解每一步骤的实现过程。文章结合MNIST数据集,详细介绍了四层网络的设计,包括conv+relu+meanPool和conv。
Matlab
2
2024-07-25
基于贝叶斯方法的手写数字识别
这份资源提供了一个手写数字分类器的设计方案,并附带源代码。该分类器利用概率统计中的贝叶斯决策理论,能够有效识别0到9的手写数字。
Matlab
5
2024-05-19
基于人工神经网络的手写数字识别
该项目利用人工神经网络技术,构建了一个MATLAB手写数字识别系统,实现了对手写数字的自动识别。
Matlab
2
2024-05-25
基于 GPLVM 降维和 SVM 的 MNIST 手写数字识别
为了提高 MNIST 手写数字识别的效率和准确率,提出了一种基于高斯过程潜变量模型 (GPLVM) 降维和支持向量机 (SVM) 分类的方法。该方法首先利用 GPLVM 对高维手写数字图像进行降维,然后使用 SVM 对降维后的数据进行分类。
分类方法
设计了两种分类方法:
方法一: 直接降维分类。对预处理后的原始数据使用 GPLVM 进行降维,然后通过 SVM 交叉验证进行分类,最后输出分类结果。
方法二: 阶梯跳跃降维分类。对预处理后的原始数据设定动态调整数据样本作为 GPLVM 降维算法的输入,通过 SVM 交叉验证分类后,对分类结果和当前维数进行保存。判断阶梯跳跃降维操作是否完毕,如果需要进一步降维,则计算新的阶梯维数执行迭代分类;如果已经结束,则输出合并后的结果。
方法二实现步骤
方法二的具体实现步骤如下:
数据预处理: 对原始数据集进行预处理,转换为实验程序需要的数据格式,并进行归一化处理。
设定阶梯维数: 采用对折交叉的方式将原始数据样本的维数进行等分,例如,原始数据为 24 维,若采用 6 折阶梯维数,则具体的降维顺序为 24 -> 20 -> 15 -> 10 -> 5 -> 1。
动态调整数据样本: 第一次输入时,数据样本保持为原始状态。在后面的迭代过程中,首先执行降维和 SVM 交叉验证分类,然后判断是否需要进一步降维。如果需要,则对此刻的样本进行动态调整,将上一次降维后的样本数据输出作为下一次 GPLVM 降维操作的输入。
GPLVM 降维优势
与其他非线性降维方法不同,GPLVM 不仅关注保持数据空间原有的局部距离,还侧重于在潜变量空间内分离原数据空间中距离较远的点。通过添加反向约束,GPLVM 同样实现了对原空间局部距离的保持。
算法与数据结构
2
2024-07-01
基于MATLAB的BP算法手写数字识别系统
首先打开GUI,与其他方法相比,我设计的图形用户界面更加直观易用。
Matlab
2
2024-08-01
手写数字识别使用MATLAB实现
使用机器学习方法实现的手写数字识别MATLAB源代码。
Matlab
4
2024-05-01
TensorFlow 构建 AlexNet 手写数字识别模型
利用 TensorFlow 框架构建 AlexNet 模型,用于识别手写数字,代码实现参考 Kaggle 平台上的开源项目。
算法与数据结构
3
2024-05-21
模式识别课程实验手写数字和口语数字识别
在NTUA(2016-2017)模式识别课程第9学期的实验中,我们进行了两项实验:一是手写数字0-9的视觉识别,采用了深度神经网络,达到了约99.8%的识别率;二是基于语音数据的口语数字识别,在Matlab中使用HMM工具进行了模型评估,显示出了良好的准确性。
Matlab
4
2024-07-25
MATLAB实现手写数字的高效识别方法
利用MATLAB实现了手写数字的快速识别算法,该算法具有典型特征,适合作为课程设计的参考资料。
Matlab
0
2024-08-14