我在我的机器学习和深度学习项目中分享了手写SVM算法的Matlab代码。项目指南包括克隆/下载存储库并提取ZIP文件,然后在第一级目录中执行命令“ python main.py”。执行后,将生成用于PDF报告的所有结果和图像。此外,项目还涉及克隆/下载存储库并运行“ alphaBuildFeatures.m”文件,生成两个单独的“ .mat”文件中的结果。分类代码和结果存储在“分类结果”文件夹中。通过克隆/下载存储库并在MATLAB中右键单击“ INK.fig”,然后单击“在GUIDE中打开”,您可以运行GUI,将手写曲线分割或分类数字。最后,您还可以通过运行“ Rubine.m”,“ Viterbi_NY.m”或“ Viterbi_US.m”获取不同邮政编码的分类结果。项目还包括运行“ Klaviyoexercise.py”文件,进行客户数据的统计分析。