弹簧加载倒立摆(SLIP)步态模型可以使用多种参数来描述,如弹簧刚度、机器人质量、着地角和腿长。调整这些参数通常耗时,但贝叶斯优化提供了一种有效的方法来寻找最佳步态参数。用户可以设定初始条件,贝叶斯优化能够根据这些条件找到最佳的弹簧刚度和着地角度。在不同的初始条件下,贝叶斯优化能够发现多种步态模式,包括步行、跑步和跳跃。详细信息请见附加的PDF文件。
贝叶斯优化在SLIP模型参数调整中的应用Bayesian Optimization of SLIP model parameters
相关推荐
贝叶斯公式与朴素贝叶斯
贝叶斯公式描述了事件在已知条件下发生的概率。朴素贝叶斯是一种机器学习算法,它假设特征在给定类的情况下相互独立。
算法与数据结构
2
2024-05-13
R语言贝叶斯计算Bayesian Computation With R 英文版
这本书是初学贝叶斯方法的理想伴侣。它也对希望了解更多R语言和贝叶斯方法的统计从业者非常有价值。作者编写的LearnBayes包可以从CRAN网站上获取,包含了书中描述的所有R函数。
算法与数据结构
1
2024-07-29
贝叶斯自适应直接搜索(BADS)优化器MATLAB中的新贝叶斯优化算法开发
BADS是一种创新的快速贝叶斯优化算法,专为解决复杂的优化问题而设计,特别是那些涉及到模型拟合(如最大似然估计)的情况。在各种基准测试中,BADS表现出色,与其他流行的MATLAB优化器(如fminsearch、fmincon和cmaes [1])相比具有相当甚至更好的性能。目前,BADS已被全球多个计算实验室广泛采用,涉及领域从行为、认知和计算神经科学到工程和经济学等,被引用和应用超过一百次。对于那些缺乏梯度信息或目标函数为非分析或嘈杂的情况,例如通过数值逼近或模拟评估的问题,BADS是一个理想的选择。与其他内置的MATLAB优化器(如fminsearch)一样,BADS操作简便,无需复杂的调整。详细信息、教程和文档可访问该项目的GitHub页面:https://github.com/lacerbi/bads。
Matlab
0
2024-08-09
数据挖掘中贝叶斯理论的创新应用
数据挖掘领域中,贝叶斯理论及其改进算法正广泛应用,尤其在邮件系统等具体应用场景中表现突出。
数据挖掘
0
2024-09-22
朴素贝叶斯在Matlab中的简单实现方法
在Matlab中实现朴素贝叶斯分类器相对简单,有助于初步理解其工作原理。这种方法直接提供可用的代码示例,便于快速学习和应用。
Matlab
1
2024-07-26
基于非参数贝叶斯模型的新型聚类算法(2013年)
聚类分析是机器学习和数据挖掘领域重要技术之一,与监督学习不同,聚类分析无需类别或标签指导,因此如何选择适当的聚类个数一直是难点。为解决这一问题,提出了一种基于Dirichlet过程混合模型的新型聚类算法,采用collapsed Gibbs采样算法对模型参数进行估计。新算法基于非参数贝叶斯模型框架,通过连续采样优化模型参数,实现自适应聚类个数。在人工合成和真实数据集上的实验表明,该算法表现出良好的聚类效果。
数据挖掘
0
2024-08-14
朴素贝叶斯分类在数据挖掘中的应用
在数据挖掘的实际应用中,朴素贝叶斯分类算法被广泛采用。这种方法简单有效,能够有效地处理大规模数据集。
数据挖掘
2
2024-07-13
朴素贝叶斯在程序员创意书中的应用
4.1 实验工具介绍文本分类是对输入文章进行预先设定类别判定的问题,涉及到大量文本要素的处理。因此选择适当的编程语言有助于文本分类实验的进行。Python 是一种应用广泛的通用编程语言,在文本分类领域中有其显著特点和优势。1、易于快速开发,语言简洁,技巧性小。2、内置常用的数据结构和算法,不仅有利于提高程序易读性,且利于文本结构的储存,便于文本的转换处理。3、具有丰富的标准库和第三方库以及数据处理包,许多辅助环节如字符编码、网页信息抓取等可以借鉴已有框架。4、相关研究的丰富积累,Python 在自然语言处理方面有很多优秀的相关模块和博客文章,有利于相关知识的快速了解与掌握。4.2 特征提取与表达方法的设计本实验,在设计过程中主要考虑以下几点:①文本分类属于有监督的学习,需要整理样本,确定样本数目以及记录样本标签。②针对爬取的新闻样本需要进行分词操作得到文章的词语表示。③因为分词后每篇文章中包含的词语是很多的,这些词并不都是表征能力强的词,所以需要根据词性、词长短等过滤掉大部分的无关词。④如何表征文章呢?在本实验中,我采用的特征提取模型是向量空间模型(VSM),即将样本转换为向量。为了能实现这种转换,需要进行确定特征词典和得到特征向量的过程。⑤虽然可以将所有样本的词都提取出来作为词典,但随着样本数目的增多,词典规模可能达到万级、千万级甚至亿级,这么大的维度可能会带来维度灾难,因此就要想办法从大量的特征中选择一些有代表性的特征而又不影响分类的效果,这个环节,我采用了目前领域内认为比较好的卡方检验方法得到每类中的关键词。⑥作为特征向量的表示,这里我采用了 TF-IDF 的方法得到每篇文章的特征表达。4.3 分类算法的选择在本实验中,我采用了朴素贝叶斯和 SVM 两种分类方法进行文本分类,其中,朴素贝叶斯为自己编写实现,SVM 为调用的 sklearn.svm.SVC。下面,我将从原理及流程方面介绍这两种分类算法。一、朴素贝叶斯
算法与数据结构
4
2024-07-15
贝叶斯判别规则
假设我们有 k 个总体,分别记为 $G_1, G_2,..., G_k$,每个总体都有其对应的概率密度函数 $f_1(x), f_2(x), ..., f_k(x)$,以及先验概率 $p_1, p_2, ..., p_k$。
对于一个新样本 x,我们想要判断它属于哪个总体。根据贝叶斯定理,我们可以计算后验概率:
$$P(G_i|x) = frac{p_i f_i(x)}{sum_{j=1}^{k} p_j f_j(x)}, i = 1,2,...,k$$
其中:
$P(G_i|x)$ 表示给定样本 x 的情况下,样本属于总体 $G_i$ 的概率。
$f_i(x)$ 表示样本 x 在总体 $G_i$ 中出现的概率密度。
$p_i$ 表示总体 $G_i$ 的先验概率。
贝叶斯判别规则指出,为了最小化误判概率,我们应该将样本 x 判给后验概率最大的那个总体。
统计分析
5
2024-05-24