介绍了使用加权最小二乘法进行电力系统状态估计的方法,涵盖了电压幅度、功率注入和功率流的测量。
使用加权最小二乘法进行电力系统状态估计 matlab开发
相关推荐
迭代加权最小二乘法的应用iwls-matlab开发
高斯牛顿法是一种用于优化问题的迭代算法,在数据拟合和参数估计中具有广泛的应用。在Matlab环境下,iwls-matlab开发提供了一种高效的实现方式,用于处理复杂的统计模型和大规模数据集。该方法通过迭代加权最小二乘法,结合Matlab的强大功能,为解决实际问题提供了可靠的工具。
Matlab
2
2024-07-19
使用最小二乘法确定初始轨道MATLAB开发
为了计算历元的轨道要素,从跟踪站收集了包括方位角、仰角和距离在内的大量测量值。在这项工作中,我利用46组GEOS3卫星的测量数据进行初始轨道的确定。首先,通过Double-R-Iteration/Gauss方法从三组方位角和仰角计算出卫星状态向量的初始猜测。随后,状态向量在迭代过程中根据每个测量时间段进行时期传播,并通过校正状态向量来优化轨道解算。
Matlab
0
2024-08-09
matlab程序实现最小二乘法
关于目标跟踪的最小二乘方法在Matlab中的实现,其坐标是基于三维空间。参考文献为《信息融合中多平台多传感器的时空对准研究》第28页至33页。
Matlab
0
2024-10-03
MATLAB实现偏最小二乘法
这里是偏最小二乘法的MATLAB代码实现示例。使用此代码,您可以轻松实现数据的回归分析,并得到精准的模型参数。
Matlab
0
2024-11-02
Matlab PLS Connectome使用偏最小二乘法进行静息状态相关分析的脚本
该存储库包含用于对连接数据 (fMRI) 进行偏最小二乘法 (PLS) 分析的脚本。该脚本格式化功能连接矩阵,并使用来自McIntosh等人(1996)的PLS Matlab工具箱中的函数进行分析。分析过程通过cmPLS函数执行。请注意,该代码可以免费用于重用/改编/重新混合等,需确保PLS Matlab工具箱在Matlab环境中可用。
Matlab
0
2024-11-06
电力系统模拟电力系统-MATLAB开发
MATLAB开发中的电力系统仿真
Matlab
2
2024-07-28
线性回归最小二乘法求解
采用最小二乘法求解线性回归模型的参数,目的是使模型拟合数据点时,残差平方和最小。
算法与数据结构
3
2024-05-01
多种最小二乘法综述及Matlab模拟
综合了多种最小二乘法,包括递推最小二乘算法、遗忘因子最小二乘法、限定记忆最小二乘法、偏差补偿最小二乘法、增广最小二乘法、广义最小二乘法等,并提供了Matlab仿真示例。
Matlab
0
2024-09-23
带有混合加权干扰的广义总最小二乘法在Matlab中的应用开发
这些Matlab函数用于计算广义和/或混合总最小二乘问题的解。总最小二乘问题(也称为变量误差问题)解决超定线性方程组\((A_0 + dA)X = (B_0 + dB)\),其中未知扰动\(dA\)和\(dB\)的协方差矩阵被认为是对角线,记为\(E([dA, dB]^T [dA, dB]) = \sigma_d \cdot I\)。混合总最小二乘问题则适用于具有不同变量的线性方程组\([A_1, A_2]X = B\),其中\(A_1\)是无误差变量,而\(A_2 = A_0 + dA_2\)和\(B = B_0 + dB\)是具有干扰的变量。广义总最小二乘问题求解的线性方程组形式为\((A_0 + dA)X = (B_0 + dB)\),其中干扰的协方差矩阵是正定的,通过\(\sigma_d \cdot W = E([dA, dB]^T [dA, dB])\)给出。
Matlab
0
2024-11-05