开发一个精确的系统来分析乳腺癌图像数据,可以增强医生的诊断信心,并可用于扫描临床数据库中的所有历史扫描结果,以评估患者的风险。模糊逻辑系统能够建立准确近似人类专业知识的知识库和规则库,有助于医生例行诊断乳腺癌。遗传算法通过使用数据子集学习最佳模糊逻辑系统的隶属函数和规则库,增强系统在特定数据集上的表现。
使用GFS的乳腺癌威斯康星州数据分析聚类和遗传模糊算法应用
相关推荐
乳腺癌肿瘤良恶性预测数据集
该数据集包含用于预测乳腺癌肿瘤良恶性的数据,并已划分为训练集和测试集,可用于训练和评估机器学习模型。
算法与数据结构
2
2024-05-25
使用预训练模型进行乳腺癌图像分类的MATLAB代码
在乳腺癌检测中,该MATLAB代码利用预训练模型对图像进行分类。需要的前提条件包括Python 2.7和MATLAB(使用LIBSVM)。数据集来自BreakHis,使用VGG-16权重进行处理。方法包括特征提取、数据平衡处理以及使用线性SVM、多项式SVM和随机森林进行分类。
Matlab
0
2024-10-02
Matlab代码保密分类论文使用AMLC分析和机器学习技术对乳腺癌预后的评估
这篇硕士论文代码是在瑞典隆德大学数学统计系撰写的补充,研究了使用Matlab 2017a编写和测试的乳腺癌患者预后分类的技术。为保护患者机密,没有提供数据。请在阅读代码前查阅相关论文。
Matlab
3
2024-07-21
乳腺癌计算辅助系统-开源解决方案
JSADM是一项研究项目,专注于利用神经网络和各种数据挖掘算法来进行模式搜索。
数据挖掘
2
2024-07-16
模糊核聚类算法实现
我创建了一个函数来实现模糊核聚类算法,用于多模型控制建模。尽管建模没有成功,但该聚类算法运行良好。
Matlab
2
2024-05-13
模糊聚类算法MATLAB代码优化与应用
优化与应用模糊聚类算法MATLAB代码,包括模糊c均值聚类、模糊子空间聚类和最大熵聚类。示例使用虹膜数据集进行演示,详细展示每种算法的运行和聚类结果。选择超参数“choose_algorithm=1”运行demo_fuzzy.m,每次迭代均准确率为0.89333。
Matlab
3
2024-07-28
模糊C均值聚类算法在数据挖掘中的应用
模糊C均值(FCM)聚类算法是数据挖掘中一种广泛应用的方法,与传统的K-Means算法相比,FCM允许数据点模糊地属于多个类别,特别适用于处理边界不清晰、类别重叠的数据集。算法通过迭代更新聚类中心和数据点的隶属度,以加权平均值反映数据点对每个类别的归属程度。FCM在图像分割、文本分类和市场细分等领域有着广泛的应用。
数据挖掘
2
2024-07-18
使用层次和基于密度的聚类方法的数据分析比较研究
数据挖掘涉及使用不同技术来提取有用模式。聚类是其中一种技术,通过提取数据中的聚类以发现信息。层次聚类和基于密度的聚类是两种常用方法。层次聚类利用树状图展示聚类结果,而DBSCAN则是一种基于密度的算法,能够发现任意形状的簇。详细探讨了这些算法的高效实现。
数据挖掘
0
2024-08-08
大数据分析中聚类算法的并行化研究
探讨了在大数据分析中如何通过将传统聚类算法并行化来提高计算效率的方法。结合MapReduce分布式处理模型,作者对K-means、PAM和CLARA等三种常见算法进行了分布式化实验,并分析了数据规模和节点数量对并行算法性能的影响。实验结果表明,该方法有效地实现了聚类算法的并行化,并适用于分布式系统。
数据挖掘
2
2024-07-15