遗传算法的基本理念源于生物界的遗传过程,通过模拟自然选择和遗传变异来解决复杂的优化问题。由J.Holland于1975年提出,遗传算法适用于多维度、非线性和局部最优解问题的优化。其核心步骤包括编码解决方案、初始化种群、适应度评估、选择操作、交叉和变异过程等。遗传算法具备全局优化能力、自适应性和鲁棒性,广泛应用于机器学习、网络设计、工程优化等领域。