Home
首页
大数据
数据库
Search
Search
Toggle menu
首页
大数据
数据挖掘
正文
K-means 算法在电商客户细分的应用
数据挖掘
24
PDF
917.84KB
2024-05-13
#电子商务
#客户细分
#K-means 算法
#数据挖掘
#聚类算法
采用 K-means 算法对某服装电商网站的客户进行细分。算法进行了改进,包括:
- 排除数据集中的噪声点
- 获取更准确的初始聚类中心
改进后算法提高了聚类的准确率和紧密度。
相关推荐
基于K-means聚类算法的民航客户细分模型构建
基于K-means聚类算法的民航客户细分模型构建 问题背景 客户关系管理中,客户价值评估是关键环节。通过分析航空公司数据仓库中的客户信息,构建精准的客户细分模型,可以有效提升客户价值。 方法与模型 本研究采用数据挖掘技术中的K-means聚类算法,对民航客户进行细分。通过实验分析,将客户划分为3个类别,并针对每类客户制定相应的营销策略。 结果与结论 实验结果表明,K-means聚类算法能够有效识别客户行为特征差异,实现精准的客户细分。基于细分结果制定的营销策略,可将客户价值提升约30%。 模型优势 精准识别客户行为差异 有效提升客户价值 指导制定差异化营销策略 应用领域 民航客户关系管理
数据挖掘
19
2024-04-30
K-means聚类算法原理与应用
输入数据的自动聚类,用的是经典的K 均值算法,逻辑简单、上手快,蛮适合刚接触数据挖掘的你。整个流程也比较清晰,先选中心,再分组,迭代直到不变,基本就是聚类算法的套路。步骤里用的是距离函数,你可以根据场景选欧几里得或者曼哈顿,像图片聚类用欧几里得就挺顺。重点是每次更新簇中心都靠平均值算的,响应也快,代码也简单。配套资源也挺全的,不管你用MATLAB写还是想了解变种算法,相关链接都整理好了:K 均值聚类算法、基于多维数据的初始中心、K 均值源码(MATLAB),这些都能直接上手跑。如果你正好在做项目,遇到数据聚类场景,比如客户分群、图像、文本分类,都可以先用 K-means 试一把。注意初始中心选
数据挖掘
0
2025-07-01
详解k-means聚类算法
k-means聚类算法是一种常用的数据分析技术,特别是在大数据处理中具有显著优势。深入解析了k-means算法及其基于mapreduce的实现。
Hadoop
14
2024-09-14
K-means聚类算法实现
K-means 的聚类逻辑蛮清晰的,主要靠计算“谁离谁近”,把数据点分到最近的中心里。你要是手上有一堆样本,想看看有没有分组规律,用它还挺合适。孤立点也能得比较稳,结果还挺有参考价值。 K-means的实现过程不算复杂,核心就两个步骤:先随机选中心,不停更新,直到不再变。嗯,像在调频收音机,调到信号位置为止。要注意初始中心点选得不好,聚类效果就偏了。 如果你是用Python写的,可以直接撸个小脚本试试,比如下面这样: from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=3) kmeans.fit(data) 别的语言也有,
数据挖掘
0
2025-07-01
优化文本聚类中K-Means算法的应用
随着互联网的普及和企业信息化程度的提高,非结构化(如HTML和纯文件)或半结构化(如XML数据)的文本数据正在快速增长,因此文本数据的管理和分析变得尤为重要。聚类技术作为文本信息挖掘的核心技术之一,将文档集合分成若干簇,确保同一簇内文档内容的相似度尽可能大,不同簇之间的相似度尽可能小。自20世纪50年代以来,人们提出了多种聚类算法,主要分为基于划分和基于层次的两类。其中,K-Means算法是最著名的基于划分的算法之一,自1967年由MacQueen首次提出以来,成为广泛应用于数理统计、模式识别、机器学习和数据挖掘的算法之一。尽管K-Means算法和其变种在速度和实现上有很多优势,但由于初始中心
数据挖掘
7
2024-10-17
k-means算法优缺点
优点:- 简单高效- 大数据集处理高效- 对密集簇效果较好 缺点:- 必须预先确定簇数(k)- 对初始值敏感,不同初始值可能导致不同结果- 不适用于非凸形或大小差异大簇- 对噪声和孤立点敏感
数据挖掘
17
2024-05-01
k-means聚类算法及matlab代码的应用
在机器学习与数据挖掘实验中,我们探索了k-means聚类算法的应用,使用Matlab实现了相关代码。实验涵盖了多源数据集成、清洗和统计,以及数据的数值量化处理。我们通过C/C++/Java程序实现了两个数据源的合并,并解决了数据的一致性问题。实验结果包括了学生家乡在北京的课程平均成绩计算,以及对广州和上海女生体能测试成绩的比较。此外,我们还分析了学习成绩与体能测试成绩之间的相关性。
Matlab
13
2024-08-03
k-均值(k-means)算法及其在Matlab中的实现
k-均值(k-means)算法是数据挖掘中常用的一种无监督学习方法,用于将数据点分组或聚类。它通过迭代过程将数据点分配到最近的聚类中心,并更新这些中心为所在簇内所有点的平均值。在Matlab中实现k-均值算法可以方便理解其工作原理,利用Matlab强大的数值计算能力进行高效实现。算法步骤包括:1. 初始化:随机选择k个初始聚类中心。2. 分配:计算数据点到各聚类中心的距离,分配到最近的中心所在簇。3. 更新:更新每个簇的中心为该簇内所有点的平均值。4. 迭代:重复分配和更新步骤,直到收敛或达到最大迭代次数。Matlab中的实现优势在于其简洁的语法和丰富的内置函数,例如pdist2和kmeans
算法与数据结构
10
2024-09-14
matlab中的K-means算法优化
通过Matlab矩阵操作加速的LITEKMEANS K-means聚类算法。
Matlab
9
2024-07-22