随着时间推移,人类所积累的数据量每月增长超过15%,这种情况下,仅依赖人类分析数据已经不再可行。据估计,全球信息量每二十个月翻倍,而数据库的数量和规模增长速度更快。数据挖掘技术成为了解这些数据的关键工具。
数据挖掘社会需求与SPSS-Clementine应用详解
相关推荐
数据挖掘技术与SPSS-Clementine应用详解
在SPSS-Clementine中,数据挖掘技术涵盖多种数据类型:连续型适用于数值描述,离散型适用于描述未知数量的字符串,标志型用于仅有两个值的数据,集合型描述多个具体值的数据,有序集合型用于有内部顺序的数据,无类型则适用于不符合以上任一种类的数据或含有众多元素的集合类型数据。
数据挖掘
2
2024-07-24
数据挖掘原理与SPSS-Clementine应用宝典详解
17.5计算标准t17.5.1交叉验证标准t交叉验证的概念是将样本分成两个子集:一个包含n-m个样本的训练样本集,另一个包含m个样本的验证样本集。第一个样本集用于建模,第二个样本集用于评估预期偏差或估算距离。例如,在具有定量输入的神经网络中,通常使用高斯偏差:(17-30)
数据挖掘
2
2024-07-17
数据挖掘原理与SPSS-Clementine应用宝典详解
C5.0节点成本页签C5.0节点对话框用于显示错误归类损失矩阵,指定不同类型预测错误之间的相对重要性。图21-20展示了错误归类损失的成本对比。损失矩阵显示每一可能预测类和实际类组合的损失情况,允许用户自定义损失值以及改变预测类与实际类组合的损失值。
数据挖掘
0
2024-09-01
数据挖掘原理与SPSS-Clementine应用指南
5.2.2.1.相关概念t假定给定的样本数据为Y、X,其中因变量样本数据矩阵Y=(y1,y2,…,yn)是p×n样本矩阵,即p个因变量,n个样本;自变量样本数据矩阵X是q×n矩阵,即q个自变量,n个样本。在实际计算时,X一般是将原始数据中心化后得到的样本矩阵,即:X×1n=0。
数据挖掘
3
2024-07-15
数据挖掘原理与SPSS-Clementine应用指南
图21-91展示了线性回归节点汇总页签的详细内容,涵盖了数据挖掘原理与SPSS-Clementine应用的重要节点。
数据挖掘
3
2024-07-16
数据挖掘原理与SPSS-Clementine应用宝典
用户可以从数据流的任何非终端节点中生成用户输入节点。具体步骤包括:(1)确定在流程的哪一点输入节点;(2)右键单击节点并选择“生成用户输入节点(P)”,将节点数据导入用户输入节点;(3)用户输入节点负载了流程下游的所有过程,代替原有节点。生成后,节点从原数据中继承了所有数据结构和字段类型信息(如果可以继承)。
数据挖掘
2
2024-07-18
数据挖掘原理与SPSS-Clementine应用指南
19.2.4统计汇总图19-21展示了一个汇总节点的实例。汇总节点能够将一系列输入记录转换为综合且总结性的输出记录,具体的汇总对话框如图19-21所示。
数据挖掘
0
2024-08-10
数据挖掘原理与SPSS-Clementine应用指南
图19-23展示了如何设置和读取追加节点数据。追加节点通过从同一数据源读取所有记录,并保持数据结构的一致性,直至数据源无更多记录。
数据挖掘
0
2024-10-12
数据挖掘原理与SPSS-Clementine应用宝典
在这本书中,我们深入探讨了数据挖掘的基础原理,并详细介绍了如何利用SPSS-Clementine软件进行应用。通过本书,读者可以系统地学习数据挖掘技术,掌握SPSS-Clementine的实际操作技能。
数据挖掘
0
2024-10-16