现实中的数据常常是多模态的,来源于不同的异构源,因此形成了多视图数据的情况。在机器学习领域,多视图聚类已成为重要的研究范式。然而,由于某些视图数据的缺失,实际应用中的不完全多视图聚类(IMC)充满挑战。
多模态数据聚类的挑战与应用
相关推荐
层次聚类方案的发展与应用
在多个领域中,针对对象根据相似性进行分类的技术日益受到关注。通过建立聚类系统与特定距离度量之间的对应关系,提出了两种计算快速且在数据单调转换下不变的聚类方法。一种方法形成优化的“连接”聚类,另一种形成优化的“紧凑”聚类。随着数据科学的发展,层次聚类方案不仅限于生物学和医学,还在心理学等领域展现出广泛应用。
算法与数据结构
1
2024-08-01
可调多趟聚类挖掘在电信数据分析中的应用
可调多趟聚类挖掘方法针对电信数据分析的难题提出,通过两趟聚类解决聚类簇数难确定和单趟算法难收敛的问题。该方法能适应不同数据分析需求,适用于不确定簇数的大数据分析。
数据挖掘
3
2024-05-13
创新的多维度多视角新闻数据聚类策略
随着信息时代的深入,处理多粒度和多视图的新闻数据变得至关重要。介绍了一种创新的方法,有效聚合和分析不同视角下的新闻信息,以提升信息处理效率和准确性。
统计分析
0
2024-10-15
层次聚类中的关键挑战:合并与分裂策略
层次聚类的难点在于如何确定最佳的合并或分裂点。由于该过程的不可逆性,每一次合并或分裂操作都会直接影响后续聚类结果。错误的决策可能导致低质量的聚类结果,因此,优化合并和分裂策略至关重要。
为提升层次聚类的效果,可以考虑结合其他聚类技术,例如 BRIRCH、CURE 和 ROCK 等。
算法与数据结构
2
2024-06-30
层次聚类算法: 数据挖掘技术与应用
层次聚类算法无须预先设置参数,但需终止条件。
聚合式 (AGNES) 和分裂式 (DIANA) 算法属于层次聚类算法。
Hadoop
7
2024-04-30
数据挖掘与机器学习中聚类算法的应用
聚类算法用于无监督学习,将没有明确分类映射关系的物品分组,解决了没有历史数据时对物品分类的需求。例如,可应用于客户价值划分、网页归类等场景。
数据挖掘
5
2024-04-30
多光谱聚类算法在Matlab中的开发-MSCWK
多光谱聚类算法在Matlab中的开发。Yu和Shi(2003)提出了一种多类光谱聚类方法。
Matlab
2
2024-07-19
模糊聚类算法MATLAB代码优化与应用
优化与应用模糊聚类算法MATLAB代码,包括模糊c均值聚类、模糊子空间聚类和最大熵聚类。示例使用虹膜数据集进行演示,详细展示每种算法的运行和聚类结果。选择超参数“choose_algorithm=1”运行demo_fuzzy.m,每次迭代均准确率为0.89333。
Matlab
3
2024-07-28
k-means聚类算法的应用与特点分析
聚类分析,又称群分析,是研究分类问题的一种统计分析方法,也是数据挖掘的重要算法之一。k-means是其中一种经典的聚类算法,通过度量向量间的相似性来组织数据。它基于样本点之间的距离进行聚类,将数据分为若干个类别,每个类别内部的样本点相似度高于不同类别的样本点。k-means算法在数据挖掘和模式识别中具有广泛的应用。
数据挖掘
2
2024-07-16