在ArcGIS平台上,大数据分析和挖掘正成为关键的研究方向和实践应用领域。利用其强大的空间数据处理能力,ArcGIS正在推动大数据时代下地理信息系统的革新和应用拓展。
ArcGIS平台下的大数据分析与挖掘
相关推荐
大数据分析与挖掘
第一章:数据分析基础理论- 数据分析概述- 大数据分析基础- 大数据预测分析
第二章:计算机数据分析SPSS Modeler- SPSS Modeler概述- SPSS Modeler节点介绍
第三章:计算机数据分析Hadoop- 大数据平台Hadoop
算法与数据结构
5
2024-04-30
大数据分析平台Spark的应用
大数据分析平台Spark在“蘑菇云”行动中发挥了关键作用。
spark
3
2024-07-13
京东金融大数据分析平台
海量数据时代,数据分析需求紧迫。京东金融构建大数据分析平台,助力企业有效利用数据实现精准决策。
算法与数据结构
4
2024-05-13
大数据时代的数据分析平台架构
随着互联网、移动互联网和物联网的蓬勃发展,我们已经置身于海量数据的时代。据数据调查公司IDC预测,到2011年,全球数据总量将达到1.8万亿GB。在这样的背景下,对海量数据进行精准分析已经成为一项非常紧迫的需求。
算法与数据结构
2
2024-07-17
SQL Server平台下的数据仓库与数据挖掘资源
数据仓库与数据挖掘第一版-陈志泊,以及数据仓库与数据挖掘工程实例-张兴会2014年9月第一版,附带完整书签和md笔记文件的目录框架,详尽介绍了在SQL Server平台下的相关内容。档为自学者提供便利,如需正版请参阅原版。
SQLServer
0
2024-09-13
大数据分析平台总体架构——数据存储层的设计与实施
在电商大数据实践中,企业内外部的非结构化和半结构化数据被采集并存储,经过结构化处理后,最终得到用于数据模型的结构化数据。数据按照HDFS文件存储,并建议保留1年。平台包括集市区、沙盘区、增值产品区、主题区和归档区,支持批量作业访问。少量高级业务人员利用MapReduce分布式计算进行大数据分析,包括文本检索、语义分词、图像识别和音频识别。与主题区和贴源区形成Hadoop集群(HDFS),保证无单点故障,实现全天候运行。平台还支持历史数据查询和归档,使用Hive提供查询服务。另外,独立的Hadoop集群(HDFS+Hive)同样具备高可用性,保证数据按照归档规则存储,支持历史数据的有效管理。
Hadoop
0
2024-08-09
Hadoop大数据分析平台的关键技术探讨
深入探讨了基于Hadoop平台的大数据分析技术的发展及功能模块的应用,对关键技术进行了比较分析,并优化了整体结构框架,以便数据分析平台在各种场景下都能发挥作用。
Hadoop
2
2024-07-20
大数据分析
这本书是关于大数据分析的教科书,由斯坦福大学知名教授Anand Rajaraman和Jeff Ullman整理编写而成,内容非常实用。
数据挖掘
0
2024-10-12
Spark赋能外卖行业:大数据分析平台构建与应用
Spark赋能外卖行业:大数据分析平台构建与应用
平台核心技术
该平台以Spark为核心,整合了批处理、流处理和机器学习等技术,构建了完整的数据处理流程,涵盖数据采集、清洗、存储、分析和可视化等环节。
平台功能
实时订单分析: 对订单数据进行实时监控和分析,掌握业务动态。
用户行为分析: 深入洞察用户行为,为精准营销和个性化推荐提供数据支撑。
配送路径优化: 利用机器学习算法优化配送路径,提高配送效率。
商圈分析: 分析商圈特征,为商家选址和运营决策提供依据。
平台价值
该平台能够帮助外卖企业:
提升运营效率
优化资源配置
增强用户体验
实现数据驱动决策
案例分享
某外卖平台应用该系统后,配送效率提升了20%,用户满意度提高了15%。
spark
4
2024-04-29